// // Efficient delegates in C++ that generate only two lines of asm code! // Documentation is found at http://www.codeproject.com/cpp/FastDelegate.asp // // - Don Clugston, Mar 2004. // Major contributions were made by Jody Hagins. // // // Adapted for WinAVR by Lauri Kirikal, Mar 2007. // // History: // 24-Apr-04 1.0 * Submitted to CodeProject. // 28-Apr-04 1.1 * Prevent most unsafe uses of evil static function hack. // * Improved syntax for horrible_cast (thanks Paul Bludov). // * Tested on Metrowerks MWCC and Intel ICL (IA32) // * Compiled, but not run, on Comeau C++ and Intel Itanium ICL. // 27-Jun-04 1.2 * Now works on Borland C++ Builder 5.5 // * Now works on /clr "managed C++" code on VC7, VC7.1 // * Comeau C++ now compiles without warnings. // * Prevent the virtual inheritance case from being used on // VC6 and earlier, which generate incorrect code. // * Improved warning and error messages. Non-standard hacks // now have compile-time checks to make them safer. // * implicit_cast used instead of static_cast in many cases. // * If calling a const member function, a const class pointer can be used. // * MakeDelegate() global helper function added to simplify pass-by-value. // * Added fastdelegate.Clear() // 16-Jul-04 1.2.1* Workaround for gcc bug (const member function pointers in templates) // 30-Oct-04 1.3 * Support for (non-void) return values. // * No more workarounds in client code! // MSVC and Intel now use a clever hack invented by John Dlugosz: // - The FASTDELEGATEDECLARE workaround is no longer necessary. // - No more warning messages for VC6 // * Less use of macros. Error messages should be more comprehensible. // * Added include guards // * Added FastDelegate::Empty() to test if invocation is safe (Thanks Neville Franks). // * Now tested on VS 2005 Express Beta, PGI C++ // 24-Dec-04 1.4 * Added DelegateMemento, to allow collections of disparate delegates. // * <,>,<=,>= comparison operators to allow storage in ordered containers. // * Substantial reduction of code size, especially the 'Closure' class. // * Standardised all the compiler-specific workarounds. // * MFP conversion now works for CodePlay (but not yet supported in the full code). // * Now compiles without warnings on _any_ supported compiler, including BCC 5.5.1 // * New syntax: FastDelegate< int (char *, double) >. // 14-Feb-05 1.4.1* Now treats =0 as equivalent to .Clear(), ==0 as equivalent to .Empty(). (Thanks elfric). // * Now tested on Intel ICL for AMD64, VS2005 Beta for AMD64 and Itanium. // 30-Mar-05 1.5 * Safebool idiom: "if (dg)" is now equivalent to "if (!dg.Empty())" // * Fully supported by CodePlay VectorC // * Bugfix for Metrowerks: Empty() was buggy because a valid MFP can be 0 on MWCC! // * More optimal assignment,== and != operators for static function pointers. /* Minor Changes For AVR C++ Lib Compatibility STARTS ... */ #ifndef __AVR_CPP_DELEGATE_H__ #define __AVR_CPP_DELEGATE_H__ #if !(defined(EXCLUDE_FAST_DELEGATE) && defined(EXCLUDE_MULTI_DELEGATE) && defined(EXLUDE_DATA_DELEGATE)) #ifndef __cplusplus #error "Delegate.h needs C++ compiler." #else /* Header file memory.h is missing in WinAVR. Needed functions are defined in string.h Lauri Kirikal */ #ifdef __AVR__ #include #else #include // to allow <,> comparisons #endif /* ... ENDS Lauri Kirikal */ //////////////////////////////////////////////////////////////////////////////// // Configuration options // //////////////////////////////////////////////////////////////////////////////// // Uncomment the following #define for optimally-sized delegates. // In this case, the generated asm code is almost identical to the code you'd get // if the compiler had native support for delegates. // It will not work on systems where sizeof(dataptr) < sizeof(codeptr). // Thus, it will not work for DOS compilers using the medium model. // It will also probably fail on some DSP systems. #define FASTDELEGATE_USESTATICFUNCTIONHACK // Uncomment the next line to allow function declarator syntax. // It is automatically enabled for those compilers where it is known to work. //#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX //////////////////////////////////////////////////////////////////////////////// // Compiler identification for workarounds // //////////////////////////////////////////////////////////////////////////////// // Compiler identification. It's not easy to identify Visual C++ because // many vendors fraudulently define Microsoft's identifiers. #if defined(_MSC_VER) && !defined(__MWERKS__) && !defined(__VECTOR_C) && !defined(__ICL) && !defined(__BORLANDC__) #define FASTDLGT_ISMSVC #if (_MSC_VER <1300) // Many workarounds are required for VC6. #define FASTDLGT_VC6 #pragma warning(disable:4786) // disable this ridiculous warning #endif #endif // Does the compiler uses Microsoft's member function pointer structure? // If so, it needs special treatment. // Metrowerks CodeWarrior, Intel, and CodePlay fraudulently define Microsoft's // identifier, _MSC_VER. We need to filter Metrowerks out. #if defined(_MSC_VER) && !defined(__MWERKS__) #define FASTDLGT_MICROSOFT_MFP #if !defined(__VECTOR_C) // CodePlay doesn't have the __single/multi/virtual_inheritance keywords #define FASTDLGT_HASINHERITANCE_KEYWORDS #endif #endif // Does it allow function declarator syntax? The following compilers are known to work: #if defined(FASTDLGT_ISMSVC) && (_MSC_VER >=1310) // VC 7.1 #define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX #endif // Gcc(2.95+), and versions of Digital Mars, Intel and Comeau in common use. #if defined (__DMC__) || defined(__GNUC__) || defined(__ICL) || defined(__COMO__) #define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX #endif // It works on Metrowerks MWCC 3.2.2. From boost.Config it should work on earlier ones too. #if defined (__MWERKS__) #define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX #endif #ifdef __GNUC__ // Workaround GCC bug #8271 // At present, GCC doesn't recognize constness of MFPs in templates #define FASTDELEGATE_GCC_BUG_8271 #endif //////////////////////////////////////////////////////////////////////////////// // General tricks used in this code // // (a) Error messages are generated by typdefing an array of negative size to // generate compile-time errors. // (b) Warning messages on MSVC are generated by declaring unused variables, and // enabling the "variable XXX is never used" warning. // (c) Unions are used in a few compiler-specific cases to perform illegal casts. // (d) For Microsoft and Intel, when adjusting the 'this' pointer, it's cast to // (char *) first to ensure that the correct number of *bytes* are added. // //////////////////////////////////////////////////////////////////////////////// // Helper templates // //////////////////////////////////////////////////////////////////////////////// /* namespace names modified: fastdelegate -> CppDelegate detail -> Internal Lauri Kirikal */ namespace CppDelegate { namespace Internal { // we'll hide the implementation details in a nested namespace. // implicit_cast< > // I believe this was originally going to be in the C++ standard but // was left out by accident. It's even milder than static_cast. // I use it instead of static_cast<> to emphasize that I'm not doing // anything nasty. // Usage is identical to static_cast<> template inline OutputClass implicit_cast(InputClass input){ return input; } // horrible_cast< > // This is truly evil. It completely subverts C++'s type system, allowing you // to cast from any class to any other class. Technically, using a union // to perform the cast is undefined behaviour (even in C). But we can see if // it is OK by checking that the union is the same size as each of its members. // horrible_cast<> should only be used for compiler-specific workarounds. // Usage is identical to reinterpret_cast<>. // This union is declared outside the horrible_cast because BCC 5.5.1 // can't inline a function with a nested class, and gives a warning. template union horrible_union{ OutputClass out; InputClass in; }; template inline OutputClass horrible_cast(const InputClass input){ horrible_union u; // Cause a compile-time error if in, out and u are not the same size. // If the compile fails here, it means the compiler has peculiar // unions which would prevent the cast from working. typedef int ERROR_CantUseHorrible_cast[sizeof(InputClass)==sizeof(u) && sizeof(InputClass)==sizeof(OutputClass) ? 1 : -1]; u.in = input; return u.out; } //////////////////////////////////////////////////////////////////////////////// // Workarounds // //////////////////////////////////////////////////////////////////////////////// // Backwards compatibility: This macro used to be necessary in the virtual inheritance // case for Intel and Microsoft. Now it just forward-declares the class. #define FASTDELEGATEDECLARE(CLASSNAME) class CLASSNAME; // Prevent use of the static function hack with the DOS medium model. #ifdef __MEDIUM__ #undef FASTDELEGATE_USESTATICFUNCTIONHACK #endif // DefaultVoid - a workaround for 'void' templates in VC6. // // (1) VC6 and earlier do not allow 'void' as a default template argument. // (2) They also doesn't allow you to return 'void' from a function. // // Workaround for (1): Declare a dummy type 'DefaultVoid' which we use // when we'd like to use 'void'. We convert it into 'void' and back // using the templates DefaultVoidToVoid<> and VoidToDefaultVoid<>. // Workaround for (2): On VC6, the code for calling a void function is // identical to the code for calling a non-void function in which the // return value is never used, provided the return value is returned // in the EAX register, rather than on the stack. // This is true for most fundamental types such as int, enum, void *. // Const void * is the safest option since it doesn't participate // in any automatic conversions. But on a 16-bit compiler it might // cause extra code to be generated, so we disable it for all compilers // except for VC6 (and VC5). #ifdef FASTDLGT_VC6 // VC6 workaround typedef const void * DefaultVoid; #else // On any other compiler, just use a normal void. typedef void DefaultVoid; #endif // Translate from 'DefaultVoid' to 'void'. // Everything else is unchanged template struct DefaultVoidToVoid { typedef T type; }; template <> struct DefaultVoidToVoid { typedef void type; }; // Translate from 'void' into 'DefaultVoid' // Everything else is unchanged template struct VoidToDefaultVoid { typedef T type; }; template <> struct VoidToDefaultVoid { typedef DefaultVoid type; }; //////////////////////////////////////////////////////////////////////////////// // Fast Delegates, part 1: // // Conversion of member function pointer to a standard form // //////////////////////////////////////////////////////////////////////////////// // GenericClass is a fake class, ONLY used to provide a type. // It is vitally important that it is never defined, so that the compiler doesn't // think it can optimize the invocation. For example, Borland generates simpler // code if it knows the class only uses single inheritance. // Compilers using Microsoft's structure need to be treated as a special case. #ifdef FASTDLGT_MICROSOFT_MFP #ifdef FASTDLGT_HASINHERITANCE_KEYWORDS // For Microsoft and Intel, we want to ensure that it's the most efficient type of MFP // (4 bytes), even when the /vmg option is used. Declaring an empty class // would give 16 byte pointers in this case.... class __single_inheritance GenericClass; #endif // ...but for Codeplay, an empty class *always* gives 4 byte pointers. // If compiled with the /clr option ("managed C++"), the JIT compiler thinks // it needs to load GenericClass before it can call any of its functions, // (compiles OK but crashes at runtime!), so we need to declare an // empty class to make it happy. // Codeplay and VC4 can't cope with the unknown_inheritance case either. class GenericClass {}; #else class GenericClass; #endif // The size of a single inheritance member function pointer. const int SINGLE_MEMFUNCPTR_SIZE = sizeof(void (GenericClass::*)()); // SimplifyMemFunc< >::Convert() // // A template function that converts an arbitrary member function pointer into the // simplest possible form of member function pointer, using a supplied 'this' pointer. // According to the standard, this can be done legally with reinterpret_cast<>. // For (non-standard) compilers which use member function pointers which vary in size // depending on the class, we need to use knowledge of the internal structure of a // member function pointer, as used by the compiler. Template specialization is used // to distinguish between the sizes. Because some compilers don't support partial // template specialisation, I use full specialisation of a wrapper struct. // general case -- don't know how to convert it. Force a compile failure template struct SimplifyMemFunc { template inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { // Unsupported member function type -- force a compile failure. // (it's illegal to have a array with negative size). typedef char ERROR_Unsupported_member_function_pointer_on_this_compiler[N-100]; return 0; } }; // For compilers where all member func ptrs are the same size, everything goes here. // For non-standard compilers, only single_inheritance classes go here. template <> struct SimplifyMemFunc { template inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind, GenericMemFuncType &bound_func) { #if defined __DMC__ // Digital Mars doesn't allow you to cast between abitrary PMF's, // even though the standard says you can. The 32-bit compiler lets you // static_cast through an int, but the DOS compiler doesn't. bound_func = horrible_cast(function_to_bind); #else bound_func = reinterpret_cast(function_to_bind); #endif return reinterpret_cast(pthis); } }; //////////////////////////////////////////////////////////////////////////////// // Fast Delegates, part 1b: // // Workarounds for Microsoft and Intel // //////////////////////////////////////////////////////////////////////////////// // Compilers with member function pointers which violate the standard (MSVC, Intel, Codeplay), // need to be treated as a special case. #ifdef FASTDLGT_MICROSOFT_MFP /* ... ERASED for shorter compiling time ... Lauri Kirikal */ #error "MSVC, Intel, Codeplay compilers support erased from this file." #endif // MS/Intel hacks } // namespace Internal //////////////////////////////////////////////////////////////////////////////// // Fast Delegates, part 2: // // Define the delegate storage, and cope with static functions // //////////////////////////////////////////////////////////////////////////////// // DelegateMemento -- an opaque structure which can hold an arbitary delegate. // It knows nothing about the calling convention or number of arguments used by // the function pointed to. // It supplies comparison operators so that it can be stored in STL collections. // It cannot be set to anything other than null, nor invoked directly: // it must be converted to a specific delegate. // Implementation: // There are two possible implementations: the Safe method and the Evil method. // DelegateMemento - Safe version // // This implementation is standard-compliant, but a bit tricky. // A static function pointer is stored inside the class. // Here are the valid values: // +-- Static pointer --+--pThis --+-- pMemFunc-+-- Meaning------+ // | 0 | 0 | 0 | Empty | // | !=0 |(dontcare)| Invoker | Static function| // | 0 | !=0 | !=0* | Method call | // +--------------------+----------+------------+----------------+ // * For Metrowerks, this can be 0. (first virtual function in a // single_inheritance class). // When stored stored inside a specific delegate, the 'dontcare' entries are replaced // with a reference to the delegate itself. This complicates the = and == operators // for the delegate class. // DelegateMemento - Evil version // // For compilers where data pointers are at least as big as code pointers, it is // possible to store the function pointer in the this pointer, using another // horrible_cast. In this case the DelegateMemento implementation is simple: // +--pThis --+-- pMemFunc-+-- Meaning---------------------+ // | 0 | 0 | Empty | // | !=0 | !=0* | Static function or method call| // +----------+------------+-------------------------------+ // * For Metrowerks, this can be 0. (first virtual function in a // single_inheritance class). // Note that the Sun C++ and MSVC documentation explicitly state that they // support static_cast between void * and function pointers. /* DelegateMemento moved from CppDelegate namespace to CppDelegate::Internal namespace Lauri Kirikal */ namespace Internal { class DelegateMemento { protected: // the data is protected, not private, because many // compilers have problems with template friends. typedef void (Internal::GenericClass::*GenericMemFuncType)(); // arbitrary MFP. Internal::GenericClass *m_pthis; GenericMemFuncType m_pFunction; #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) typedef void (*GenericFuncPtr)(); // arbitrary code pointer GenericFuncPtr m_pStaticFunction; #endif public: #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) DelegateMemento() : m_pthis(0), m_pFunction(0), m_pStaticFunction(0) {}; void Clear() { m_pthis=0; m_pFunction=0; m_pStaticFunction=0; } #else DelegateMemento() : m_pthis(0), m_pFunction(0) {}; void Clear() { m_pthis=0; m_pFunction=0; } #endif public: #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) inline bool IsEqual (const DelegateMemento &x) const{ // We have to cope with the static function pointers as a special case if (m_pFunction!=x.m_pFunction) return false; // the static function ptrs must either both be equal, or both be 0. if (m_pStaticFunction!=x.m_pStaticFunction) return false; if (m_pStaticFunction!=0) return m_pthis==x.m_pthis; else return true; } #else // Evil Method inline bool IsEqual (const DelegateMemento &x) const{ return m_pthis==x.m_pthis && m_pFunction==x.m_pFunction; } #endif // Provide a strict weak ordering for DelegateMementos. inline bool IsLess(const DelegateMemento &right) const { // deal with static function pointers first #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) if (m_pStaticFunction !=0 || right.m_pStaticFunction!=0) return m_pStaticFunction < right.m_pStaticFunction; #endif if (m_pthis !=right.m_pthis) return m_pthis < right.m_pthis; // There are no ordering operators for member function pointers, // but we can fake one by comparing each byte. The resulting ordering is // arbitrary (and compiler-dependent), but it permits storage in ordered STL containers. return memcmp(&m_pFunction, &right.m_pFunction, sizeof(m_pFunction)) < 0; } // BUGFIX (Mar 2005): // We can't just compare m_pFunction because on Metrowerks, // m_pFunction can be zero even if the delegate is not empty! inline bool operator ! () const // Is it bound to anything? { return m_pthis==0 && m_pFunction==0; } inline bool Empty() const // Is it bound to anything? { return m_pthis==0 && m_pFunction==0; } public: DelegateMemento & operator = (const DelegateMemento &right) { SetMementoFrom(right); return *this; } inline bool operator <(const DelegateMemento &right) { return IsLess(right); } inline bool operator >(const DelegateMemento &right) { return right.IsLess(*this); } DelegateMemento (const DelegateMemento &right) : m_pthis(right.m_pthis), m_pFunction(right.m_pFunction) #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) , m_pStaticFunction (right.m_pStaticFunction) #endif {} protected: void SetMementoFrom(const DelegateMemento &right) { m_pFunction = right.m_pFunction; m_pthis = right.m_pthis; #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) m_pStaticFunction = right.m_pStaticFunction; #endif } }; } // namespace Internal // ClosurePtr<> // // A private wrapper class that adds function signatures to DelegateMemento. // It's the class that does most of the actual work. // The signatures are specified by: // GenericMemFunc: must be a type of GenericClass member function pointer. // StaticFuncPtr: must be a type of function pointer with the same signature // as GenericMemFunc. // UnvoidStaticFuncPtr: is the same as StaticFuncPtr, except on VC6 // where it never returns void (returns DefaultVoid instead). // An outer class, FastDelegateN<>, handles the invoking and creates the // necessary typedefs. // This class does everything else. namespace Internal { template < class GenericMemFunc, class StaticFuncPtr, class UnvoidStaticFuncPtr> class ClosurePtr : public DelegateMemento { public: // These functions are for setting the delegate to a member function. // Here's the clever bit: we convert an arbitrary member function into a // standard form. XMemFunc should be a member function of class X, but I can't // enforce that here. It needs to be enforced by the wrapper class. template < class X, class XMemFunc > inline void bindmemfunc(X *pthis, XMemFunc function_to_bind ) { m_pthis = SimplifyMemFunc< sizeof(function_to_bind) > ::Convert(pthis, function_to_bind, m_pFunction); #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) m_pStaticFunction = 0; #endif } // For const member functions, we only need a const class pointer. // Since we know that the member function is const, it's safe to // remove the const qualifier from the 'this' pointer with a const_cast. // VC6 has problems if we just overload 'bindmemfunc', so we give it a different name. template < class X, class XMemFunc> inline void bindconstmemfunc(const X *pthis, XMemFunc function_to_bind) { m_pthis= SimplifyMemFunc< sizeof(function_to_bind) > ::Convert(const_cast(pthis), function_to_bind, m_pFunction); #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) m_pStaticFunction = 0; #endif } #ifdef FASTDELEGATE_GCC_BUG_8271 // At present, GCC doesn't recognize constness of MFPs in templates template < class X, class XMemFunc> inline void bindmemfunc(const X *pthis, XMemFunc function_to_bind) { bindconstmemfunc(pthis, function_to_bind); #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) m_pStaticFunction = 0; #endif } #endif // These functions are required for invoking the stored function inline GenericClass *GetClosureThis() const { return m_pthis; } inline GenericMemFunc GetClosureMemPtr() const { return reinterpret_cast(m_pFunction); } // There are a few ways of dealing with static function pointers. // There's a standard-compliant, but tricky method. // There's also a straightforward hack, that won't work on DOS compilers using the // medium memory model. It's so evil that I can't recommend it, but I've // implemented it anyway because it produces very nice asm code. #if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) // ClosurePtr<> - Safe version // // This implementation is standard-compliant, but a bit tricky. // I store the function pointer inside the class, and the delegate then // points to itself. Whenever the delegate is copied, these self-references // must be transformed, and this complicates the = and == operators. public: // The next two functions are for operator ==, =, and the copy constructor. // We may need to convert the m_pthis pointers, so that // they remain as self-references. template< class DerivedClass > inline void CopyFrom (DerivedClass *pParent, const DelegateMemento &x) { SetMementoFrom(x); if (m_pStaticFunction!=0) { // transform self references... m_pthis=reinterpret_cast(pParent); } } // For static functions, the 'static_function_invoker' class in the parent // will be called. The parent then needs to call GetStaticFunction() to find out // the actual function to invoke. template < class DerivedClass, class ParentInvokerSig > inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker, StaticFuncPtr function_to_bind ) { if (function_to_bind==0) { // cope with assignment to 0 m_pFunction=0; } else { bindmemfunc(pParent, static_function_invoker); } m_pStaticFunction=reinterpret_cast(function_to_bind); } inline UnvoidStaticFuncPtr GetStaticFunction() const { return reinterpret_cast(m_pStaticFunction); } #else // ClosurePtr<> - Evil version // // For compilers where data pointers are at least as big as code pointers, it is // possible to store the function pointer in the this pointer, using another // horrible_cast. Invocation isn't any faster, but it saves 4 bytes, and // speeds up comparison and assignment. If C++ provided direct language support // for delegates, they would produce asm code that was almost identical to this. // Note that the Sun C++ and MSVC documentation explicitly state that they // support static_cast between void * and function pointers. template inline void CopyFrom (DerivedClass *pParent, const DelegateMemento &right) { SetMementoFrom(right); } // For static functions, the 'static_function_invoker' class in the parent // will be called. The parent then needs to call GetStaticFunction() to find out // the actual function to invoke. // ******** EVIL, EVIL CODE! ******* template inline void bindstaticfunc(DerivedClass *pParent, ParentInvokerSig static_function_invoker, StaticFuncPtr function_to_bind) { if (function_to_bind==0) { // cope with assignment to 0 m_pFunction=0; } else { // We'll be ignoring the 'this' pointer, but we need to make sure we pass // a valid value to bindmemfunc(). bindmemfunc(pParent, static_function_invoker); } // WARNING! Evil hack. We store the function in the 'this' pointer! // Ensure that there's a compilation failure if function pointers // and data pointers have different sizes. // If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK. typedef int ERROR_CantUseEvilMethod[sizeof(GenericClass *)==sizeof(function_to_bind) ? 1 : -1]; m_pthis = horrible_cast(function_to_bind); // MSVC, SunC++ and DMC accept the following (non-standard) code: // m_pthis = static_cast(static_cast(function_to_bind)); // BCC32, Comeau and DMC accept this method. MSVC7.1 needs __int64 instead of long // m_pthis = reinterpret_cast(reinterpret_cast(function_to_bind)); } // ******** EVIL, EVIL CODE! ******* // This function will be called with an invalid 'this' pointer!! // We're just returning the 'this' pointer, converted into // a function pointer! inline UnvoidStaticFuncPtr GetStaticFunction() const { // Ensure that there's a compilation failure if function pointers // and data pointers have different sizes. // If you get this error, you need to #undef FASTDELEGATE_USESTATICFUNCTIONHACK. typedef int ERROR_CantUseEvilMethod[sizeof(UnvoidStaticFuncPtr)==sizeof(this) ? 1 : -1]; return horrible_cast(this); } #endif // !defined(FASTDELEGATE_USESTATICFUNCTIONHACK) // Does the closure contain this static function? inline bool IsEqualToStaticFuncPtr(StaticFuncPtr funcptr){ if (funcptr==0) return Empty(); // For the Evil method, if it doesn't actually contain a static function, this will return an arbitrary // value that is not equal to any valid function pointer. else return funcptr==reinterpret_cast(GetStaticFunction()); } }; } // namespace Internal //////////////////////////////////////////////////////////////////////////////// // Fast Delegates, part 3: // // Wrapper classes to ensure type safety // //////////////////////////////////////////////////////////////////////////////// // Once we have the member function conversion templates, it's easy to make the // wrapper classes. So that they will work with as many compilers as possible, // the classes are of the form // FastDelegate3 // They can cope with any combination of parameters. The max number of parameters // allowed is 8, but it is trivial to increase this limit. // Note that we need to treat const member functions seperately. // All this class does is to enforce type safety, and invoke the delegate with // the correct list of parameters. // Because of the weird rule about the class of derived member function pointers, // you sometimes need to apply a downcast to the 'this' pointer. // This is the reason for the use of "implicit_cast(pthis)" in the code below. // If CDerivedClass is derived from CBaseClass, but doesn't override SimpleVirtualFunction, // without this trick you'd need to write: // MyDelegate(static_cast(&d), &CDerivedClass::SimpleVirtualFunction); // but with the trick you can write // MyDelegate(&d, &CDerivedClass::SimpleVirtualFunction); // RetType is the type the compiler uses in compiling the template. For VC6, // it cannot be void. DesiredRetType is the real type which is returned from // all of the functions. It can be void. // Implicit conversion to "bool" is achieved using the safe_bool idiom, // using member data pointers (MDP). This allows "if (dg)..." syntax // Because some compilers (eg codeplay) don't have a unique value for a zero // MDP, an extra padding member is added to the SafeBool struct. // Some compilers (eg VC6) won't implicitly convert from 0 to an MDP, so // in that case the static function constructor is not made explicit; this // allows "if (dg==0) ..." to compile. /* Member function names modified: bind -> Bind empty -> IsEmpty clear -> Clear Functions GetMemento and SetMemento: public -> protected Lauri Kirikal */ // N=0 template class FastDelegate0 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(); typedef RetType (*UnvoidStaticFunctionPtr)(); typedef RetType (Internal::GenericClass::*GenericMemFn)(); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate0 type; // Construction and comparison functions FastDelegate0() { Clear(); } FastDelegate0(const FastDelegate0 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate0 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate0 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate0 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate0 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate0 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate0(Y *pthis, DesiredRetType (X::* function_to_bind)() ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)()) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate0(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)() const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate0(DesiredRetType (*function_to_bind)() ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)() ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)()) { m_Closure.bindstaticfunc(this, &FastDelegate0::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType Invoke() const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(); } inline RetType operator() () const { return Invoke(); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear(); } protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction() const { return (*(m_Closure.GetStaticFunction()))(); } }; // N=1 template class FastDelegate1 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate1 type; // Construction and comparison functions FastDelegate1() { Clear(); } FastDelegate1(const FastDelegate1 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate1 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate1 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate1 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate1 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate1 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate1(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate1(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate1(DesiredRetType (*function_to_bind)(Param1 p1) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1)) { m_Closure.bindstaticfunc(this, &FastDelegate1::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType Invoke(Param1 p1) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1); } inline RetType operator() (Param1 p1) const { return Invoke(p1); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear(); } protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1) const { return (*(m_Closure.GetStaticFunction()))(p1); } }; //N=2 template class FastDelegate2 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate2 type; // Construction and comparison functions FastDelegate2() { Clear(); } FastDelegate2(const FastDelegate2 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate2 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate2 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate2 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate2 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate2 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate2(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate2(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate2(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) { m_Closure.bindstaticfunc(this, &FastDelegate2::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2) const { return (*(m_Closure.GetStaticFunction()))(p1, p2); } }; //N=3 template class FastDelegate3 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate3 type; // Construction and comparison functions FastDelegate3() { Clear(); } FastDelegate3(const FastDelegate3 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate3 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate3 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate3 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate3 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate3 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate3(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate3(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate3(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3)) { m_Closure.bindstaticfunc(this, &FastDelegate3::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2, Param3 p3) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3); } }; //N=4 template class FastDelegate4 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate4 type; // Construction and comparison functions FastDelegate4() { Clear(); } FastDelegate4(const FastDelegate4 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate4 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate4 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate4 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate4 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate4 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate4(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate4(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate4(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) { m_Closure.bindstaticfunc(this, &FastDelegate4::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4); } }; //N=5 template class FastDelegate5 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate5 type; // Construction and comparison functions FastDelegate5() { Clear(); } FastDelegate5(const FastDelegate5 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate5 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate5 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate5 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate5 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate5 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate5(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate5(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate5(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5)) { m_Closure.bindstaticfunc(this, &FastDelegate5::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5); } }; //N=6 template class FastDelegate6 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate6 type; // Construction and comparison functions FastDelegate6() { Clear(); } FastDelegate6(const FastDelegate6 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate6 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate6 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate6 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate6 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate6 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate6(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate6(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate6(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6)) { m_Closure.bindstaticfunc(this, &FastDelegate6::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6); } }; //N=7 template class FastDelegate7 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate7 type; // Construction and comparison functions FastDelegate7() { Clear(); } FastDelegate7(const FastDelegate7 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate7 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate7 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate7 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate7 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate7 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate7(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate7(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate7(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7)) { m_Closure.bindstaticfunc(this, &FastDelegate7::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7); } }; //N=8 template class FastDelegate8 { private: typedef typename Internal::DefaultVoidToVoid::type DesiredRetType; typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8); typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8); typedef RetType (Internal::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8); typedef Internal::ClosurePtr ClosureType; ClosureType m_Closure; public: // Typedefs to aid generic programming typedef FastDelegate8 type; // Construction and comparison functions FastDelegate8() { Clear(); } FastDelegate8(const FastDelegate8 &x) { m_Closure.CopyFrom(this, x.m_Closure); } void operator = (const FastDelegate8 &x) { m_Closure.CopyFrom(this, x.m_Closure); } bool operator ==(const FastDelegate8 &x) const { return m_Closure.IsEqual(x.m_Closure); } bool operator !=(const FastDelegate8 &x) const { return !m_Closure.IsEqual(x.m_Closure); } bool operator <(const FastDelegate8 &x) const { return m_Closure.IsLess(x.m_Closure); } bool operator >(const FastDelegate8 &x) const { return x.m_Closure.IsLess(m_Closure); } // Binding to non-const member functions template < class X, class Y > FastDelegate8(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { m_Closure.bindmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Binding to const member functions. template < class X, class Y > FastDelegate8(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } template < class X, class Y > inline void Bind(const Y *pthis, DesiredRetType (X::* function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const) { m_Closure.bindconstmemfunc(Internal::implicit_cast(pthis), function_to_bind); } // Static functions. We convert them into a member function call. // This constructor also provides implicit conversion FastDelegate8(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) { Bind(function_to_bind); } // for efficiency, prevent creation of a temporary void operator = (DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) ) { Bind(function_to_bind); } inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8)) { m_Closure.bindstaticfunc(this, &FastDelegate8::InvokeStaticFunction, function_to_bind); } // Invoke the delegate RetType operator() (Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const { return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(p1, p2, p3, p4, p5, p6, p7, p8); } // Implicit conversion to "bool" using the safe_bool idiom private: typedef struct SafeBoolStruct { int a_data_pointer_to_this_is_0_on_buggy_compilers; StaticFunctionPtr m_nonzero; } UselessTypedef; typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type; public: operator unspecified_bool_type() const { return IsEmpty()? 0: &SafeBoolStruct::m_nonzero; } // necessary to allow ==0 to work despite the safe_bool idiom inline bool operator==(StaticFunctionPtr funcptr) { return m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator!=(StaticFunctionPtr funcptr) { return !m_Closure.IsEqualToStaticFuncPtr(funcptr); } inline bool operator ! () const { // Is it bound to anything? return !m_Closure; } inline bool IsEmpty() const { return !m_Closure; } void Clear() { m_Closure.Clear();} protected: // Conversion to and from the DelegateMemento storage class const Internal::DelegateMemento & GetMemento() { return m_Closure; } void SetMemento(const Internal::DelegateMemento &any) { m_Closure.CopyFrom(this, any); } private: // Invoker for static functions RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5, Param6 p6, Param7 p7, Param8 p8) const { return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7, p8); } }; /* ... part 4, part 5 ERASED ... And now on only AVR-specific code with GPL license Lauri Kirikal */ /**********************************************************************************************************************\ C++ library for Atmel AVR microcontrollers Copyright (C) 2007 Lauri Kirikal, Mikk Leini, MTÜ TTÜ Robotiklubi This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. See http://creativecommons.org/licenses/GPL/2.0/ MTÜ TTÜ Robotiklubi http://www.robotiklubi.ee robotiklubi@gmail.com Lauri Kirikal laurikirikal@gmail.com Mikk Leini mikk.leini@gmail.com \**********************************************************************************************************************/ #ifndef EXCLUDE_FAST_DELEGATE typedef FastDelegate0 FastDelegate; #endif #if !defined(EXCLUDE_DATA_DELEGATE) || !defined(EXCLUDE_MULTI_DELEGATE) namespace Internal { template bool AddFastDelegate(Delegate &delegate, FastDelegate &addable) { if (!delegate.me) { delegate.me = addable; } else { if (delegate.next == NULL) { delegate.next = new Delegate(addable); if (delegate.next == NULL) return false; } else { return delegate.next->Add(addable); } } return true; } // AddFastDelegate template bool AddFunction(Delegate &delegate, Function function) { if (!delegate.me) { delegate.me.Bind(function); } else { if (delegate.next == NULL) { delegate.next = new Delegate(function); if (delegate.next == NULL) return false; } else { return delegate.next->Add(function); } } return true; } // AddFunction template bool AddMemberFunction(Delegate &delegate, Object *object, MemberFunction function) { if (!delegate.me) { delegate.me.Bind(object, function); } else { if (delegate.next == NULL) { delegate.next = new Delegate(object, function); if (delegate.next == NULL) return false; } else { return delegate.next->Add(object, function); } } return true; } // AddMemberFunction template bool RemoveAll(Delegate &delegate, FastDelegate &removable) { if (removable == delegate.me) { if (delegate.next == NULL) { delegate.me.Clear(); } else { Delegate *cutOut, *cutOutNext = delegate.next; while (cutOutNext->me == removable) { cutOut = cutOutNext; cutOutNext = cutOut->next; delete cutOut; if (cutOutNext == NULL) { delegate.next = NULL; delegate.me.Clear(); return true; } } delegate.me = cutOutNext->me; delegate.next = cutOutNext->next; delete cutOutNext; if (delegate.next != NULL) delegate.next->RemoveAll(removable); } } else { if (delegate.next == NULL) return false; else return delegate.next->RemoveAll(removable); } return true; } // RemoveAll template bool Remove(Delegate &delegate, FastDelegate &removable) { if (removable == delegate.me) { if (delegate.next == NULL) { delegate.me.Clear(); } else { Delegate *cutOut = delegate.next; delegate.me = cutOut->me; delegate.next = cutOut->next; delete cutOut; } } else { if (delegate.next == NULL) return false; else return delegate.next->Remove(removable); } return true; } // Remove template void Clear(Delegate &delegate) { if (delegate.next != NULL) { delegate.next->Clear(); delete delegate.next; delegate.next = NULL; } delegate.me.Clear(); } // Clear } // namespace Internal #endif // if !defined(EXCLUDE_DATA_DELEGATE) || !defined(EXCLUDE_MULTI_DELEGATE) #ifndef EXCLUDE_DATA_DELEGATE template class DelegateController; template class DataDelegate { public: typedef void (*Function)(Controller &); typedef FastDelegate1 FastDelegate; private: friend class DelegateController; template friend bool Internal::AddFastDelegate(Delegate &delegate, FastDelegate &addable); template friend bool Internal::AddFunction(Delegate &delegate, Function function); template friend bool Internal::AddMemberFunction(Delegate &delegate, Object *object, MemberFunction function); template friend bool Internal::RemoveAll(Delegate &delegate, FastDelegate &removable); template friend bool Internal::Remove(Delegate &delegate, FastDelegate &removable); template friend void Internal::Clear(Delegate &delegate); DataDelegate * next; FastDelegate me; DataDelegate() : next(NULL), me() {} DataDelegate(Function function) : next(NULL), me(function) {} DataDelegate(const FastDelegate &_me) : next(NULL), me(_me) {} template DataDelegate(X *object, void (Y::* function)(Controller &) ) : next(NULL), me(object, function) {} template DataDelegate(const X *object, void (Y::* function)(Controller &) const) : next(NULL), me(object, function) {} void Invoke(Controller &controller) const { if (!me.IsEmpty() ) { me(controller); if (next != NULL) next->Invoke(controller); } } // OPERATOR () inline void operator() (Controller &controller) const { Invoke(controller); } public: inline bool Add(FastDelegate &addable) { return Internal::AddFastDelegate, FastDelegate>(*this, addable); } // Add 1 inline bool Add(Function function) { return Internal::AddFunction, Function>(*this, function); } // Add 2 template inline bool Add(X *object, void (Y::* function)(Controller &) ) { return Internal::AddMemberFunction, X, void (Y::*)(Controller &)>(*this, object, function); } // Add 3 template inline bool Add(const X *object, void (Y::* function)(Controller &) const) { return Internal::AddMemberFunction, const X, void (Y::*)(Controller &) const>(*this, object, function); } // Add 4 inline bool RemoveAll(FastDelegate &removable) { return Internal::RemoveAll, Function>(*this, removable); } // RemoveAll 1 inline bool RemoveAll(Function function) { FastDelegate removable(function); return RemoveAll(removable); } // RemoveAll 2 template inline bool RemoveAll(X *object, void (Y::* function)(Controller &) ) { FastDelegate removable(object, function); return RemoveAll(removable); } // RemoveAll 3 template inline bool RemoveAll(const X *object, void (Y::* function)(Controller &) const) { FastDelegate removable(object, function); return RemoveAll(removable); } // RemoveAll 4 inline bool Remove(FastDelegate &removable) { return Internal::Remove, FastDelegate>(*this, removable); } // Remove 1 inline bool Remove(Function function) { FastDelegate removable(function); return Remove(removable); } // Remove 2 template inline bool Remove(X *object, void (Y::* function)(Controller &) ) { FastDelegate removable(object, function); return Remove(removable); } // Remove 3 template inline bool Remove(const X *object, void (Y::* function)(Controller &) const) { FastDelegate removable(object, function); return Remove(removable); } // Remove 4 inline void Clear() { Internal::Clear >(*this); } inline bool IsEmpty() { return !me; } inline bool operator ! () { return IsEmpty(); } inline bool operator += (Function function) { return Add(function); } inline bool operator += (FastDelegate &addable) { return Add(addable); } inline bool operator -= (Function function) { return Remove(function); } inline bool operator -= (FastDelegate &removable) { return Remove(removable); } ~DataDelegate() { Clear(); } }; // class DataDelegate template class DelegateController { protected: virtual bool Before() = 0; virtual void After() {}; private: DataDelegate dataDelegate; public: DelegateController() : dataDelegate() {} DataDelegate &Delegate() { return dataDelegate; } void Invoke() { if (Before() ) { dataDelegate(*((Derived *)this)); After(); } } // operator () inline void operator() () { Invoke(); } virtual ~DelegateController() {} }; // class DelegateController #endif // ifndef EXCLUDE_DATA_DELEGATE #ifndef EXCLUDE_MULTI_DELEGATE class MultiDelegate { public: typedef void (*Function)(void); typedef FastDelegate0<> FastDelegate; private: MultiDelegate * next; FastDelegate me; template friend bool Internal::AddFastDelegate(Delegate &delegate, FastDelegate &addable); template friend bool Internal::AddFunction(Delegate &delegate, Function function); template friend bool Internal::AddMemberFunction(Delegate &delegate, Object *object, MemberFunction function); template friend bool Internal::RemoveAll(Delegate &delegate, FastDelegate &removable); template friend bool Internal::Remove(Delegate &delegate, FastDelegate &removable); template friend void Internal::Clear(Delegate &delegate); public: MultiDelegate() : next(NULL), me() {} MultiDelegate(Function function) : next(NULL), me(function) {} MultiDelegate(const FastDelegate &_me) : next(NULL), me(_me) {} template MultiDelegate(X *object, void (Y::* function)() ) : next(NULL), me(object, function) {} template MultiDelegate(const X *object, void (Y::* function)() const) : next(NULL), me(object, function) {} void Invoke() const { if (!me.IsEmpty() ) { me(); if (next != NULL) next->Invoke(); } } // OPERATOR () inline bool Add(FastDelegate &addable) { return Internal::AddFastDelegate(*this, addable); } // Add 1 inline bool Add(Function function) { return Internal::AddFunction(*this, function); } // Add 2 template inline bool Add(X *object, void (Y::* function)() ) { return Internal::AddMemberFunction(*this, object, function); } // Add 3 template inline bool Add(const X *object, void (Y::* function)() const) { return Internal::AddMemberFunction(*this, object, function); } // Add 4 inline bool RemoveAll(FastDelegate &removable) { return Internal::RemoveAll(*this, removable); } // RemoveAll 1 inline bool RemoveAll(Function function) { FastDelegate removable(function); return RemoveAll(removable); } // RemoveAll 2 template inline bool RemoveAll(X *object, void (Y::* function)() ) { FastDelegate removable(object, function); return RemoveAll(removable); } // RemoveAll 3 template inline bool RemoveAll(const X *object, void (Y::* function)() const) { return RemoveAll(object, (void (Y::*)(void))function); } // RemoveAll 4 inline bool Remove(FastDelegate &removable) { return Internal::Remove(*this, removable); } // Remove 1 inline bool Remove(Function function) { FastDelegate removable(function); return Remove(removable); } // Remove 2 template inline bool Remove(X *object, void (Y::* function)() ) { FastDelegate removable(object, function); return Remove(removable); } // Remove 3 template inline bool Remove(const X *object, void (Y::* function)() const) { return Remove(object, (void (Y::*)(void))function); } // Remove 4 inline void Clear() { Internal::Clear(*this); } inline bool IsEmpty() const { return !me; } inline void operator() () const { Invoke(); } inline bool operator ! () const { return IsEmpty(); } inline bool operator += (Function function) { return Add(function); } inline bool operator += (FastDelegate &addable) { return Add(addable); } inline bool operator -= (Function function) { return Remove(function); } inline bool operator -= (FastDelegate &removable) { return Remove(removable); } ~MultiDelegate() { Clear(); } }; // class MultiDelegate #endif // ifndef EXCLUDE_MULTI_DELEGATE // clean up after ourselves... #undef FASTDLGT_RETTYPE } // namespace CppDelegate #endif // ifdef __cplusplus #endif // if !(defined(EXCLUDE_FAST_DELEGATE) && defined(EXCLUDE_MULTI_DELEGATE) && defined(EXLUDE_DATA_DELEGATE)) #endif // ifndef __AVR_CPP_DELEGATE_H__