226 lines
6.5 KiB
C
226 lines
6.5 KiB
C
|
/*
|
||
|
* Copyright 1995, Russell King.
|
||
|
* Various bits and pieces copyrights include:
|
||
|
* Linus Torvalds (test_bit).
|
||
|
* Big endian support: Copyright 2001, Nicolas Pitre
|
||
|
* reworked by rmk.
|
||
|
*
|
||
|
* bit 0 is the LSB of an "unsigned long" quantity.
|
||
|
*
|
||
|
* Please note that the code in this file should never be included
|
||
|
* from user space. Many of these are not implemented in assembler
|
||
|
* since they would be too costly. Also, they require privileged
|
||
|
* instructions (which are not available from user mode) to ensure
|
||
|
* that they are atomic.
|
||
|
*/
|
||
|
|
||
|
#ifndef __ASM_ARM_BITOPS_H
|
||
|
#define __ASM_ARM_BITOPS_H
|
||
|
|
||
|
#include <asm/system.h>
|
||
|
|
||
|
#define smp_mb__before_clear_bit() mb()
|
||
|
#define smp_mb__after_clear_bit() mb()
|
||
|
|
||
|
/*
|
||
|
* These functions are the basis of our bit ops.
|
||
|
*
|
||
|
* First, the atomic bitops. These use native endian.
|
||
|
*/
|
||
|
static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned long mask = 1UL << (bit & 31);
|
||
|
|
||
|
p += bit >> 5;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
*p |= mask;
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned long mask = 1UL << (bit & 31);
|
||
|
|
||
|
p += bit >> 5;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
*p &= ~mask;
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned long mask = 1UL << (bit & 31);
|
||
|
|
||
|
p += bit >> 5;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
*p ^= mask;
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned int res;
|
||
|
unsigned long mask = 1UL << (bit & 31);
|
||
|
|
||
|
p += bit >> 5;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
res = *p;
|
||
|
*p = res | mask;
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return res & mask;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned int res;
|
||
|
unsigned long mask = 1UL << (bit & 31);
|
||
|
|
||
|
p += bit >> 5;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
res = *p;
|
||
|
*p = res & ~mask;
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return res & mask;
|
||
|
}
|
||
|
|
||
|
static inline int
|
||
|
____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
unsigned int res;
|
||
|
unsigned long mask = 1UL << (bit & 31);
|
||
|
|
||
|
p += bit >> 5;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
res = *p;
|
||
|
*p = res ^ mask;
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return res & mask;
|
||
|
}
|
||
|
|
||
|
//#include <asm-generic/bitops/non-atomic.h>
|
||
|
|
||
|
/*
|
||
|
* A note about Endian-ness.
|
||
|
* -------------------------
|
||
|
*
|
||
|
* When the ARM is put into big endian mode via CR15, the processor
|
||
|
* merely swaps the order of bytes within words, thus:
|
||
|
*
|
||
|
* ------------ physical data bus bits -----------
|
||
|
* D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
|
||
|
* little byte 3 byte 2 byte 1 byte 0
|
||
|
* big byte 0 byte 1 byte 2 byte 3
|
||
|
*
|
||
|
* This means that reading a 32-bit word at address 0 returns the same
|
||
|
* value irrespective of the endian mode bit.
|
||
|
*
|
||
|
* Peripheral devices should be connected with the data bus reversed in
|
||
|
* "Big Endian" mode. ARM Application Note 61 is applicable, and is
|
||
|
* available from http://www.arm.com/.
|
||
|
*
|
||
|
* The following assumes that the data bus connectivity for big endian
|
||
|
* mode has been followed.
|
||
|
*
|
||
|
* Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
|
||
|
*/
|
||
|
extern void _set_bit_le(int nr, volatile unsigned long * p);
|
||
|
extern void _clear_bit_le(int nr, volatile unsigned long * p);
|
||
|
extern void _change_bit_le(int nr, volatile unsigned long * p);
|
||
|
extern int _test_and_set_bit_le(int nr, volatile unsigned long * p);
|
||
|
extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p);
|
||
|
extern int _test_and_change_bit_le(int nr, volatile unsigned long * p);
|
||
|
extern int _find_first_zero_bit_le(const void * p, unsigned size);
|
||
|
extern int _find_next_zero_bit_le(const void * p, int size, int offset);
|
||
|
extern int _find_first_bit_le(const unsigned long *p, unsigned size);
|
||
|
extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
|
||
|
|
||
|
/*
|
||
|
* Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
|
||
|
*/
|
||
|
extern void _set_bit_be(int nr, volatile unsigned long * p);
|
||
|
extern void _clear_bit_be(int nr, volatile unsigned long * p);
|
||
|
extern void _change_bit_be(int nr, volatile unsigned long * p);
|
||
|
extern int _test_and_set_bit_be(int nr, volatile unsigned long * p);
|
||
|
extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p);
|
||
|
extern int _test_and_change_bit_be(int nr, volatile unsigned long * p);
|
||
|
extern int _find_first_zero_bit_be(const void * p, unsigned size);
|
||
|
extern int _find_next_zero_bit_be(const void * p, int size, int offset);
|
||
|
extern int _find_first_bit_be(const unsigned long *p, unsigned size);
|
||
|
extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
|
||
|
|
||
|
/*
|
||
|
* The __* form of bitops are non-atomic and may be reordered.
|
||
|
*/
|
||
|
#define ATOMIC_BITOP_LE(name,nr,p) \
|
||
|
(__builtin_constant_p(nr) ? \
|
||
|
____atomic_##name(nr, p) : \
|
||
|
_##name##_le(nr,p))
|
||
|
|
||
|
#define ATOMIC_BITOP_BE(name,nr,p) \
|
||
|
(__builtin_constant_p(nr) ? \
|
||
|
____atomic_##name(nr, p) : \
|
||
|
_##name##_be(nr,p))
|
||
|
|
||
|
#define NONATOMIC_BITOP(name,nr,p) \
|
||
|
(____nonatomic_##name(nr, p))
|
||
|
|
||
|
/*
|
||
|
* These are the little endian, atomic definitions.
|
||
|
*/
|
||
|
#define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p)
|
||
|
#define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p)
|
||
|
#define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p)
|
||
|
#define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p)
|
||
|
#define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p)
|
||
|
#define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p)
|
||
|
#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
|
||
|
#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
|
||
|
#define find_first_bit(p,sz) _find_first_bit_le(p,sz)
|
||
|
#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
|
||
|
|
||
|
#define WORD_BITOFF_TO_LE(x) ((x))
|
||
|
|
||
|
#if 0
|
||
|
#include <asm-generic/bitops/ffz.h>
|
||
|
#include <asm-generic/bitops/__ffs.h>
|
||
|
#include <asm-generic/bitops/fls.h>
|
||
|
#include <asm-generic/bitops/ffs.h>
|
||
|
|
||
|
#include <asm-generic/bitops/fls64.h>
|
||
|
|
||
|
#include <asm-generic/bitops/sched.h>
|
||
|
#include <asm-generic/bitops/hweight.h>
|
||
|
#endif
|
||
|
|
||
|
#define BITS_PER_LONG 32
|
||
|
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
|
||
|
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
|
||
|
|
||
|
static inline int test_bit(int nr, const volatile unsigned long *addr)
|
||
|
{
|
||
|
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
|
||
|
}
|
||
|
|
||
|
#endif /* _ARM_BITOPS_H */
|