Coding styles

This commit is contained in:
BlubbFish 2019-12-03 18:43:54 +01:00
parent d75c3bc73f
commit 186792fde8
37 changed files with 5871 additions and 6009 deletions

View File

@ -1,134 +1,140 @@
namespace Unosquare.RaspberryIO.Camera
{
using Swan;
using System;
using System.Linq;
using Unosquare.Swan;
using System;
using System.Linq;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// A simple RGB color class to represent colors in RGB and YUV colorspaces.
/// </summary>
public class CameraColor {
/// <summary>
/// A simple RGB color class to represent colors in RGB and YUV colorspaces.
/// Initializes a new instance of the <see cref="CameraColor"/> class.
/// </summary>
public class CameraColor
{
/// <summary>
/// Initializes a new instance of the <see cref="CameraColor"/> class.
/// </summary>
/// <param name="r">The red.</param>
/// <param name="g">The green.</param>
/// <param name="b">The blue.</param>
public CameraColor(int r, int g, int b)
: this(r, g, b, string.Empty)
{
}
/// <summary>
/// Initializes a new instance of the <see cref="CameraColor"/> class.
/// </summary>
/// <param name="r">The red.</param>
/// <param name="g">The green.</param>
/// <param name="b">The blue.</param>
/// <param name="name">The well-known color name.</param>
public CameraColor(int r, int g, int b, string name)
{
RGB = new[] { Convert.ToByte(r.Clamp(0, 255)), Convert.ToByte(g.Clamp(0, 255)), Convert.ToByte(b.Clamp(0, 255)) };
var y = (R * .299000f) + (G * .587000f) + (B * .114000f);
var u = (R * -.168736f) + (G * -.331264f) + (B * .500000f) + 128f;
var v = (R * .500000f) + (G * -.418688f) + (B * -.081312f) + 128f;
YUV = new byte[] { (byte)y.Clamp(0, 255), (byte)u.Clamp(0, 255), (byte)v.Clamp(0, 255) };
Name = name;
}
#region Static Definitions
/// <summary>
/// Gets the predefined white color.
/// </summary>
public static CameraColor White => new CameraColor(255, 255, 255, nameof(White));
/// <summary>
/// Gets the predefined red color.
/// </summary>
public static CameraColor Red => new CameraColor(255, 0, 0, nameof(Red));
/// <summary>
/// Gets the predefined green color.
/// </summary>
public static CameraColor Green => new CameraColor(0, 255, 0, nameof(Green));
/// <summary>
/// Gets the predefined blue color.
/// </summary>
public static CameraColor Blue => new CameraColor(0, 0, 255, nameof(Blue));
/// <summary>
/// Gets the predefined black color.
/// </summary>
public static CameraColor Black => new CameraColor(0, 0, 0, nameof(Black));
#endregion
/// <summary>
/// Gets the well-known color name.
/// </summary>
public string Name { get; }
/// <summary>
/// Gets the red byte.
/// </summary>
public byte R => RGB[0];
/// <summary>
/// Gets the green byte.
/// </summary>
public byte G => RGB[1];
/// <summary>
/// Gets the blue byte.
/// </summary>
public byte B => RGB[2];
/// <summary>
/// Gets the RGB byte array (3 bytes).
/// </summary>
public byte[] RGB { get; }
/// <summary>
/// Gets the YUV byte array (3 bytes).
/// </summary>
public byte[] YUV { get; }
/// <summary>
/// Returns a hexadecimal representation of the RGB byte array.
/// Preceded by 0x and all in lowercase
/// </summary>
/// <param name="reverse">if set to <c>true</c> [reverse].</param>
/// <returns>A string</returns>
public string ToRgbHex(bool reverse)
{
var data = RGB.ToArray();
if (reverse) Array.Reverse(data);
return ToHex(data);
}
/// <summary>
/// Returns a hexadecimal representation of the YUV byte array.
/// Preceded by 0x and all in lowercase
/// </summary>
/// <param name="reverse">if set to <c>true</c> [reverse].</param>
/// <returns>A string</returns>
public string ToYuvHex(bool reverse)
{
var data = YUV.ToArray();
if (reverse) Array.Reverse(data);
return ToHex(data);
}
/// <summary>
/// Returns a hexadecimal representation of the data byte array
/// </summary>
/// <param name="data">The data.</param>
/// <returns>A string</returns>
private static string ToHex(byte[] data) => $"0x{BitConverter.ToString(data).Replace("-", string.Empty).ToLowerInvariant()}";
}
/// <param name="r">The red.</param>
/// <param name="g">The green.</param>
/// <param name="b">The blue.</param>
public CameraColor(Int32 r, Int32 g, Int32 b)
: this(r, g, b, String.Empty) {
}
/// <summary>
/// Initializes a new instance of the <see cref="CameraColor"/> class.
/// </summary>
/// <param name="r">The red.</param>
/// <param name="g">The green.</param>
/// <param name="b">The blue.</param>
/// <param name="name">The well-known color name.</param>
public CameraColor(Int32 r, Int32 g, Int32 b, String name) {
this.RGB = new[] { Convert.ToByte(r.Clamp(0, 255)), Convert.ToByte(g.Clamp(0, 255)), Convert.ToByte(b.Clamp(0, 255)) };
Single y = this.R * .299000f + this.G * .587000f + this.B * .114000f;
Single u = this.R * -.168736f + this.G * -.331264f + this.B * .500000f + 128f;
Single v = this.R * .500000f + this.G * -.418688f + this.B * -.081312f + 128f;
this.YUV = new Byte[] { (Byte)y.Clamp(0, 255), (Byte)u.Clamp(0, 255), (Byte)v.Clamp(0, 255) };
this.Name = name;
}
#region Static Definitions
/// <summary>
/// Gets the predefined white color.
/// </summary>
public static CameraColor White => new CameraColor(255, 255, 255, nameof(White));
/// <summary>
/// Gets the predefined red color.
/// </summary>
public static CameraColor Red => new CameraColor(255, 0, 0, nameof(Red));
/// <summary>
/// Gets the predefined green color.
/// </summary>
public static CameraColor Green => new CameraColor(0, 255, 0, nameof(Green));
/// <summary>
/// Gets the predefined blue color.
/// </summary>
public static CameraColor Blue => new CameraColor(0, 0, 255, nameof(Blue));
/// <summary>
/// Gets the predefined black color.
/// </summary>
public static CameraColor Black => new CameraColor(0, 0, 0, nameof(Black));
#endregion
/// <summary>
/// Gets the well-known color name.
/// </summary>
public String Name {
get;
}
/// <summary>
/// Gets the red byte.
/// </summary>
public Byte R => this.RGB[0];
/// <summary>
/// Gets the green byte.
/// </summary>
public Byte G => this.RGB[1];
/// <summary>
/// Gets the blue byte.
/// </summary>
public Byte B => this.RGB[2];
/// <summary>
/// Gets the RGB byte array (3 bytes).
/// </summary>
public Byte[] RGB {
get;
}
/// <summary>
/// Gets the YUV byte array (3 bytes).
/// </summary>
public Byte[] YUV {
get;
}
/// <summary>
/// Returns a hexadecimal representation of the RGB byte array.
/// Preceded by 0x and all in lowercase
/// </summary>
/// <param name="reverse">if set to <c>true</c> [reverse].</param>
/// <returns>A string</returns>
public String ToRgbHex(Boolean reverse) {
Byte[] data = this.RGB.ToArray();
if(reverse) {
Array.Reverse(data);
}
return ToHex(data);
}
/// <summary>
/// Returns a hexadecimal representation of the YUV byte array.
/// Preceded by 0x and all in lowercase
/// </summary>
/// <param name="reverse">if set to <c>true</c> [reverse].</param>
/// <returns>A string</returns>
public String ToYuvHex(Boolean reverse) {
Byte[] data = this.YUV.ToArray();
if(reverse) {
Array.Reverse(data);
}
return ToHex(data);
}
/// <summary>
/// Returns a hexadecimal representation of the data byte array
/// </summary>
/// <param name="data">The data.</param>
/// <returns>A string</returns>
private static String ToHex(Byte[] data) => $"0x{BitConverter.ToString(data).Replace("-", String.Empty).ToLowerInvariant()}";
}
}

View File

@ -1,216 +1,190 @@
namespace Unosquare.RaspberryIO.Camera
{
using Swan.Abstractions;
using System;
using Swan.Components;
using System.IO;
using System.Threading;
using System.Threading.Tasks;
using Unosquare.Swan.Abstractions;
using System;
using Unosquare.Swan.Components;
using System.IO;
using System.Threading;
using System.Threading.Tasks;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// The Raspberry Pi's camera controller wrapping raspistill and raspivid programs.
/// This class is a singleton
/// </summary>
public class CameraController : SingletonBase<CameraController> {
#region Private Declarations
private static readonly ManualResetEventSlim OperationDone = new ManualResetEventSlim(true);
private static readonly Object SyncRoot = new Object();
private static CancellationTokenSource _videoTokenSource = new CancellationTokenSource();
private static Task<Task> _videoStreamTask;
#endregion
#region Properties
/// <summary>
/// The Raspberry Pi's camera controller wrapping raspistill and raspivid programs.
/// This class is a singleton
/// Gets a value indicating whether the camera module is busy.
/// </summary>
public class CameraController : SingletonBase<CameraController>
{
#region Private Declarations
private static readonly ManualResetEventSlim OperationDone = new ManualResetEventSlim(true);
private static readonly object SyncRoot = new object();
private static CancellationTokenSource _videoTokenSource = new CancellationTokenSource();
private static Task<Task> _videoStreamTask;
#endregion
#region Properties
/// <summary>
/// Gets a value indicating whether the camera module is busy.
/// </summary>
/// <value>
/// <c>true</c> if this instance is busy; otherwise, <c>false</c>.
/// </value>
public bool IsBusy => OperationDone.IsSet == false;
#endregion
#region Image Capture Methods
/// <summary>
/// Captures an image asynchronously.
/// </summary>
/// <param name="settings">The settings.</param>
/// <param name="ct">The ct.</param>
/// <returns>The image bytes</returns>
/// <exception cref="InvalidOperationException">Cannot use camera module because it is currently busy.</exception>
public async Task<byte[]> CaptureImageAsync(CameraStillSettings settings, CancellationToken ct = default)
{
if (Instance.IsBusy)
throw new InvalidOperationException("Cannot use camera module because it is currently busy.");
if (settings.CaptureTimeoutMilliseconds <= 0)
throw new ArgumentException($"{nameof(settings.CaptureTimeoutMilliseconds)} needs to be greater than 0");
try
{
OperationDone.Reset();
var output = new MemoryStream();
var exitCode = await ProcessRunner.RunProcessAsync(
settings.CommandName,
settings.CreateProcessArguments(),
(data, proc) =>
{
output.Write(data, 0, data.Length);
},
null,
true,
ct);
return exitCode != 0 ? new byte[] { } : output.ToArray();
}
finally
{
OperationDone.Set();
}
}
/// <summary>
/// Captures an image.
/// </summary>
/// <param name="settings">The settings.</param>
/// <returns>The image bytes</returns>
public byte[] CaptureImage(CameraStillSettings settings)
{
return CaptureImageAsync(settings).GetAwaiter().GetResult();
}
/// <summary>
/// Captures a JPEG encoded image asynchronously at 90% quality.
/// </summary>
/// <param name="width">The width.</param>
/// <param name="height">The height.</param>
/// <param name="ct">The ct.</param>
/// <returns>The image bytes</returns>
public Task<byte[]> CaptureImageJpegAsync(int width, int height, CancellationToken ct = default)
{
var settings = new CameraStillSettings
{
CaptureWidth = width,
CaptureHeight = height,
CaptureJpegQuality = 90,
CaptureTimeoutMilliseconds = 300,
};
return CaptureImageAsync(settings, ct);
}
/// <summary>
/// Captures a JPEG encoded image at 90% quality.
/// </summary>
/// <param name="width">The width.</param>
/// <param name="height">The height.</param>
/// <returns>The image bytes</returns>
public byte[] CaptureImageJpeg(int width, int height) => CaptureImageJpegAsync(width, height).GetAwaiter().GetResult();
#endregion
#region Video Capture Methods
/// <summary>
/// Opens the video stream with a timeout of 0 (running indefinitely) at 1080p resolution, variable bitrate and 25 FPS.
/// No preview is shown
/// </summary>
/// <param name="onDataCallback">The on data callback.</param>
/// <param name="onExitCallback">The on exit callback.</param>
public void OpenVideoStream(Action<byte[]> onDataCallback, Action onExitCallback = null)
{
var settings = new CameraVideoSettings
{
CaptureTimeoutMilliseconds = 0,
CaptureDisplayPreview = false,
CaptureWidth = 1920,
CaptureHeight = 1080
};
OpenVideoStream(settings, onDataCallback, onExitCallback);
}
/// <summary>
/// Opens the video stream with the supplied settings. Capture Timeout Milliseconds has to be 0 or greater
/// </summary>
/// <param name="settings">The settings.</param>
/// <param name="onDataCallback">The on data callback.</param>
/// <param name="onExitCallback">The on exit callback.</param>
/// <exception cref="InvalidOperationException">Cannot use camera module because it is currently busy.</exception>
/// <exception cref="ArgumentException">CaptureTimeoutMilliseconds</exception>
public void OpenVideoStream(CameraVideoSettings settings, Action<byte[]> onDataCallback, Action onExitCallback)
{
if (Instance.IsBusy)
throw new InvalidOperationException("Cannot use camera module because it is currently busy.");
if (settings.CaptureTimeoutMilliseconds < 0)
throw new ArgumentException($"{nameof(settings.CaptureTimeoutMilliseconds)} needs to be greater than or equal to 0");
try
{
OperationDone.Reset();
_videoStreamTask = Task.Factory.StartNew(() => VideoWorkerDoWork(settings, onDataCallback, onExitCallback), _videoTokenSource.Token);
}
catch
{
OperationDone.Set();
throw;
}
}
/// <summary>
/// Closes the video stream of a video stream is open.
/// </summary>
public void CloseVideoStream()
{
lock (SyncRoot)
{
if (IsBusy == false)
return;
}
if (_videoTokenSource.IsCancellationRequested == false)
{
_videoTokenSource.Cancel();
_videoStreamTask.Wait();
}
_videoTokenSource = new CancellationTokenSource();
}
private static async Task VideoWorkerDoWork(
CameraVideoSettings settings,
Action<byte[]> onDataCallback,
Action onExitCallback)
{
try
{
await ProcessRunner.RunProcessAsync(
settings.CommandName,
settings.CreateProcessArguments(),
(data, proc) => onDataCallback?.Invoke(data),
null,
true,
_videoTokenSource.Token);
onExitCallback?.Invoke();
}
catch
{
// swallow
}
finally
{
Instance.CloseVideoStream();
OperationDone.Set();
}
}
#endregion
}
/// <value>
/// <c>true</c> if this instance is busy; otherwise, <c>false</c>.
/// </value>
public Boolean IsBusy => OperationDone.IsSet == false;
#endregion
#region Image Capture Methods
/// <summary>
/// Captures an image asynchronously.
/// </summary>
/// <param name="settings">The settings.</param>
/// <param name="ct">The ct.</param>
/// <returns>The image bytes</returns>
/// <exception cref="InvalidOperationException">Cannot use camera module because it is currently busy.</exception>
[System.Diagnostics.CodeAnalysis.SuppressMessage("Codequalität", "IDE0067:Objekte verwerfen, bevor Bereich verloren geht", Justification = "<Ausstehend>")]
public async Task<Byte[]> CaptureImageAsync(CameraStillSettings settings, CancellationToken ct = default) {
if(Instance.IsBusy) {
throw new InvalidOperationException("Cannot use camera module because it is currently busy.");
}
if(settings.CaptureTimeoutMilliseconds <= 0) {
throw new ArgumentException($"{nameof(settings.CaptureTimeoutMilliseconds)} needs to be greater than 0");
}
try {
OperationDone.Reset();
MemoryStream output = new MemoryStream();
Int32 exitCode = await ProcessRunner.RunProcessAsync(
settings.CommandName,
settings.CreateProcessArguments(),
(data, proc) => output.Write(data, 0, data.Length),
null,
true,
ct);
return exitCode != 0 ? new Byte[] { } : output.ToArray();
} finally {
OperationDone.Set();
}
}
/// <summary>
/// Captures an image.
/// </summary>
/// <param name="settings">The settings.</param>
/// <returns>The image bytes</returns>
public Byte[] CaptureImage(CameraStillSettings settings) => this.CaptureImageAsync(settings).GetAwaiter().GetResult();
/// <summary>
/// Captures a JPEG encoded image asynchronously at 90% quality.
/// </summary>
/// <param name="width">The width.</param>
/// <param name="height">The height.</param>
/// <param name="ct">The ct.</param>
/// <returns>The image bytes</returns>
public Task<Byte[]> CaptureImageJpegAsync(Int32 width, Int32 height, CancellationToken ct = default) {
CameraStillSettings settings = new CameraStillSettings {
CaptureWidth = width,
CaptureHeight = height,
CaptureJpegQuality = 90,
CaptureTimeoutMilliseconds = 300,
};
return this.CaptureImageAsync(settings, ct);
}
/// <summary>
/// Captures a JPEG encoded image at 90% quality.
/// </summary>
/// <param name="width">The width.</param>
/// <param name="height">The height.</param>
/// <returns>The image bytes</returns>
public Byte[] CaptureImageJpeg(Int32 width, Int32 height) => this.CaptureImageJpegAsync(width, height).GetAwaiter().GetResult();
#endregion
#region Video Capture Methods
/// <summary>
/// Opens the video stream with a timeout of 0 (running indefinitely) at 1080p resolution, variable bitrate and 25 FPS.
/// No preview is shown
/// </summary>
/// <param name="onDataCallback">The on data callback.</param>
/// <param name="onExitCallback">The on exit callback.</param>
public void OpenVideoStream(Action<Byte[]> onDataCallback, Action onExitCallback = null) {
CameraVideoSettings settings = new CameraVideoSettings {
CaptureTimeoutMilliseconds = 0,
CaptureDisplayPreview = false,
CaptureWidth = 1920,
CaptureHeight = 1080
};
this.OpenVideoStream(settings, onDataCallback, onExitCallback);
}
/// <summary>
/// Opens the video stream with the supplied settings. Capture Timeout Milliseconds has to be 0 or greater
/// </summary>
/// <param name="settings">The settings.</param>
/// <param name="onDataCallback">The on data callback.</param>
/// <param name="onExitCallback">The on exit callback.</param>
/// <exception cref="InvalidOperationException">Cannot use camera module because it is currently busy.</exception>
/// <exception cref="ArgumentException">CaptureTimeoutMilliseconds</exception>
public void OpenVideoStream(CameraVideoSettings settings, Action<Byte[]> onDataCallback, Action onExitCallback) {
if(Instance.IsBusy) {
throw new InvalidOperationException("Cannot use camera module because it is currently busy.");
}
if(settings.CaptureTimeoutMilliseconds < 0) {
throw new ArgumentException($"{nameof(settings.CaptureTimeoutMilliseconds)} needs to be greater than or equal to 0");
}
try {
OperationDone.Reset();
_videoStreamTask = Task.Factory.StartNew(() => VideoWorkerDoWork(settings, onDataCallback, onExitCallback), _videoTokenSource.Token);
} catch {
OperationDone.Set();
throw;
}
}
/// <summary>
/// Closes the video stream of a video stream is open.
/// </summary>
public void CloseVideoStream() {
lock(SyncRoot) {
if(this.IsBusy == false) {
return;
}
}
if(_videoTokenSource.IsCancellationRequested == false) {
_videoTokenSource.Cancel();
_videoStreamTask.Wait();
}
_videoTokenSource = new CancellationTokenSource();
}
private static async Task VideoWorkerDoWork(CameraVideoSettings settings, Action<Byte[]> onDataCallback, Action onExitCallback) {
try {
await ProcessRunner.RunProcessAsync(
settings.CommandName,
settings.CreateProcessArguments(),
(data, proc) => onDataCallback?.Invoke(data),
null,
true,
_videoTokenSource.Token);
onExitCallback?.Invoke();
} catch {
// swallow
} finally {
Instance.CloseVideoStream();
OperationDone.Set();
}
}
#endregion
}
}

View File

@ -1,82 +1,86 @@
namespace Unosquare.RaspberryIO.Camera
{
using Swan;
using System.Globalization;
using Unosquare.Swan;
using System;
using System.Globalization;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// Defines the Raspberry Pi camera's sensor ROI (Region of Interest)
/// </summary>
public struct CameraRect {
/// <summary>
/// Defines the Raspberry Pi camera's sensor ROI (Region of Interest)
/// The default ROI which is the entire area.
/// </summary>
public struct CameraRect
{
/// <summary>
/// The default ROI which is the entire area.
/// </summary>
public static readonly CameraRect Default = new CameraRect { X = 0M, Y = 0M, W = 1.0M, H = 1.0M };
/// <summary>
/// Gets or sets the x in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The x.
/// </value>
public decimal X { get; set; }
/// <summary>
/// Gets or sets the y location in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The y.
/// </value>
public decimal Y { get; set; }
/// <summary>
/// Gets or sets the width in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The w.
/// </value>
public decimal W { get; set; }
/// <summary>
/// Gets or sets the height in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The h.
/// </value>
public decimal H { get; set; }
/// <summary>
/// Gets a value indicating whether this instance is equal to the default (The entire area).
/// </summary>
/// <value>
/// <c>true</c> if this instance is default; otherwise, <c>false</c>.
/// </value>
public bool IsDefault
{
get
{
Clamp();
return X == Default.X && Y == Default.Y && W == Default.W && H == Default.H;
}
}
/// <summary>
/// Clamps the members of this ROI to their minimum and maximum values
/// </summary>
public void Clamp()
{
X = X.Clamp(0M, 1M);
Y = Y.Clamp(0M, 1M);
W = W.Clamp(0M, 1M - X);
H = H.Clamp(0M, 1M - Y);
}
/// <summary>
/// Returns a <see cref="string" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="string" /> that represents this instance.
/// </returns>
public override string ToString() => $"{X.ToString(CultureInfo.InvariantCulture)},{Y.ToString(CultureInfo.InvariantCulture)},{W.ToString(CultureInfo.InvariantCulture)},{H.ToString(CultureInfo.InvariantCulture)}";
}
public static readonly CameraRect Default = new CameraRect { X = 0M, Y = 0M, W = 1.0M, H = 1.0M };
/// <summary>
/// Gets or sets the x in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The x.
/// </value>
public Decimal X {
get; set;
}
/// <summary>
/// Gets or sets the y location in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The y.
/// </value>
public Decimal Y {
get; set;
}
/// <summary>
/// Gets or sets the width in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The w.
/// </value>
public Decimal W {
get; set;
}
/// <summary>
/// Gets or sets the height in relative coordinates. (0.0 to 1.0)
/// </summary>
/// <value>
/// The h.
/// </value>
public Decimal H {
get; set;
}
/// <summary>
/// Gets a value indicating whether this instance is equal to the default (The entire area).
/// </summary>
/// <value>
/// <c>true</c> if this instance is default; otherwise, <c>false</c>.
/// </value>
public Boolean IsDefault {
get {
this.Clamp();
return this.X == Default.X && this.Y == Default.Y && this.W == Default.W && this.H == Default.H;
}
}
/// <summary>
/// Clamps the members of this ROI to their minimum and maximum values
/// </summary>
public void Clamp() {
this.X = this.X.Clamp(0M, 1M);
this.Y = this.Y.Clamp(0M, 1M);
this.W = this.W.Clamp(0M, 1M - this.X);
this.H = this.H.Clamp(0M, 1M - this.Y);
}
/// <summary>
/// Returns a <see cref="String" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="String" /> that represents this instance.
/// </returns>
public override String ToString() => $"{this.X.ToString(CultureInfo.InvariantCulture)},{this.Y.ToString(CultureInfo.InvariantCulture)},{this.W.ToString(CultureInfo.InvariantCulture)},{this.H.ToString(CultureInfo.InvariantCulture)}";
}
}

View File

@ -1,340 +1,361 @@
namespace Unosquare.RaspberryIO.Camera
{
using Swan;
using System.Globalization;
using System.Text;
using Unosquare.Swan;
using System.Globalization;
using System.Text;
using System;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// A base class to implement raspistill and raspivid wrappers
/// Full documentation available at
/// https://www.raspberrypi.org/documentation/raspbian/applications/camera.md
/// </summary>
public abstract class CameraSettingsBase {
/// <summary>
/// A base class to implement raspistill and raspivid wrappers
/// Full documentation available at
/// https://www.raspberrypi.org/documentation/raspbian/applications/camera.md
/// The Invariant Culture shorthand
/// </summary>
public abstract class CameraSettingsBase
{
/// <summary>
/// The Invariant Culture shorthand
/// </summary>
protected static readonly CultureInfo Ci = CultureInfo.InvariantCulture;
#region Capture Settings
/// <summary>
/// Gets or sets the timeout milliseconds.
/// Default value is 5000
/// Recommended value is at least 300 in order to let the light collectors open
/// </summary>
public int CaptureTimeoutMilliseconds { get; set; } = 5000;
/// <summary>
/// Gets or sets a value indicating whether or not to show a preview window on the screen
/// </summary>
public bool CaptureDisplayPreview { get; set; } = false;
/// <summary>
/// Gets or sets a value indicating whether a preview window is shown in full screen mode if enabled
/// </summary>
public bool CaptureDisplayPreviewInFullScreen { get; set; } = true;
/// <summary>
/// Gets or sets a value indicating whether video stabilization should be enabled.
/// </summary>
public bool CaptureVideoStabilizationEnabled { get; set; } = false;
/// <summary>
/// Gets or sets the display preview opacity only if the display preview property is enabled.
/// </summary>
public byte CaptureDisplayPreviewOpacity { get; set; } = 255;
/// <summary>
/// Gets or sets the capture sensor region of interest in relative coordinates.
/// </summary>
public CameraRect CaptureSensorRoi { get; set; } = CameraRect.Default;
/// <summary>
/// Gets or sets the capture shutter speed in microseconds.
/// Default -1, Range 0 to 6000000 (equivalent to 6 seconds)
/// </summary>
public int CaptureShutterSpeedMicroseconds { get; set; } = -1;
/// <summary>
/// Gets or sets the exposure mode.
/// </summary>
public CameraExposureMode CaptureExposure { get; set; } = CameraExposureMode.Auto;
/// <summary>
/// Gets or sets the picture EV compensation. Default is 0, Range is -10 to 10
/// Camera exposure compensation is commonly stated in terms of EV units;
/// 1 EV is equal to one exposure step (or stop), corresponding to a doubling of exposure.
/// Exposure can be adjusted by changing either the lens f-number or the exposure time;
/// which one is changed usually depends on the camera's exposure mode.
/// </summary>
public int CaptureExposureCompensation { get; set; } = 0;
/// <summary>
/// Gets or sets the capture metering mode.
/// </summary>
public CameraMeteringMode CaptureMeteringMode { get; set; } = CameraMeteringMode.Average;
/// <summary>
/// Gets or sets the automatic white balance mode. By default it is set to Auto
/// </summary>
public CameraWhiteBalanceMode CaptureWhiteBalanceControl { get; set; } = CameraWhiteBalanceMode.Auto;
/// <summary>
/// Gets or sets the capture white balance gain on the blue channel. Example: 1.25
/// Only takes effect if White balance control is set to off.
/// Default is 0
/// </summary>
public decimal CaptureWhiteBalanceGainBlue { get; set; } = 0M;
/// <summary>
/// Gets or sets the capture white balance gain on the red channel. Example: 1.75
/// Only takes effect if White balance control is set to off.
/// Default is 0
/// </summary>
public decimal CaptureWhiteBalanceGainRed { get; set; } = 0M;
/// <summary>
/// Gets or sets the dynamic range compensation.
/// DRC changes the images by increasing the range of dark areas, and decreasing the brighter areas. This can improve the image in low light areas.
/// </summary>
public CameraDynamicRangeCompensation CaptureDynamicRangeCompensation { get; set; } =
CameraDynamicRangeCompensation.Off;
#endregion
#region Image Properties
/// <summary>
/// Gets or sets the width of the picture to take.
/// Less than or equal to 0 in either width or height means maximum resolution available.
/// </summary>
public int CaptureWidth { get; set; } = 640;
/// <summary>
/// Gets or sets the height of the picture to take.
/// Less than or equal to 0 in either width or height means maximum resolution available.
/// </summary>
public int CaptureHeight { get; set; } = 480;
/// <summary>
/// Gets or sets the picture sharpness. Default is 0, Range form -100 to 100
/// </summary>
public int ImageSharpness { get; set; } = 0;
/// <summary>
/// Gets or sets the picture contrast. Default is 0, Range form -100 to 100
/// </summary>
public int ImageContrast { get; set; } = 0;
/// <summary>
/// Gets or sets the picture brightness. Default is 50, Range form 0 to 100
/// </summary>
public int ImageBrightness { get; set; } = 50; // from 0 to 100
/// <summary>
/// Gets or sets the picture saturation. Default is 0, Range form -100 to 100
/// </summary>
public int ImageSaturation { get; set; } = 0;
/// <summary>
/// Gets or sets the picture ISO. Default is -1 Range is 100 to 800
/// The higher the value, the more light the sensor absorbs
/// </summary>
public int ImageIso { get; set; } = -1;
/// <summary>
/// Gets or sets the image capture effect to be applied.
/// </summary>
public CameraImageEffect ImageEffect { get; set; } = CameraImageEffect.None;
/// <summary>
/// Gets or sets the color effect U coordinates.
/// Default is -1, Range is 0 to 255
/// 128:128 should be effectively a monochrome image.
/// </summary>
public int ImageColorEffectU { get; set; } = -1; // 0 to 255
/// <summary>
/// Gets or sets the color effect V coordinates.
/// Default is -1, Range is 0 to 255
/// 128:128 should be effectively a monochrome image.
/// </summary>
public int ImageColorEffectV { get; set; } = -1; // 0 to 255
/// <summary>
/// Gets or sets the image rotation. Default is no rotation
/// </summary>
public CameraImageRotation ImageRotation { get; set; } = CameraImageRotation.None;
/// <summary>
/// Gets or sets a value indicating whether the image should be flipped horizontally.
/// </summary>
public bool ImageFlipHorizontally { get; set; }
/// <summary>
/// Gets or sets a value indicating whether the image should be flipped vertically.
/// </summary>
public bool ImageFlipVertically { get; set; }
/// <summary>
/// Gets or sets the image annotations using a bitmask (or flags) notation.
/// Apply a bitwise OR to the enumeration to include multiple annotations
/// </summary>
public CameraAnnotation ImageAnnotations { get; set; } = CameraAnnotation.None;
/// <summary>
/// Gets or sets the image annotations text.
/// Text may include date/time placeholders by using the '%' character, as used by strftime.
/// Example: ABC %Y-%m-%d %X will output ABC 2015-10-28 20:09:33
/// </summary>
public string ImageAnnotationsText { get; set; } = string.Empty;
/// <summary>
/// Gets or sets the font size of the text annotations
/// Default is -1, range is 6 to 160
/// </summary>
public int ImageAnnotationFontSize { get; set; } = -1;
/// <summary>
/// Gets or sets the color of the text annotations.
/// </summary>
/// <value>
/// The color of the image annotation font.
/// </value>
public CameraColor ImageAnnotationFontColor { get; set; } = null;
/// <summary>
/// Gets or sets the background color for text annotations.
/// </summary>
/// <value>
/// The image annotation background.
/// </value>
public CameraColor ImageAnnotationBackground { get; set; } = null;
#endregion
#region Interface
/// <summary>
/// Gets the command file executable.
/// </summary>
public abstract string CommandName { get; }
/// <summary>
/// Creates the process arguments.
/// </summary>
/// <returns>The string that represents the process arguments</returns>
public virtual string CreateProcessArguments()
{
var sb = new StringBuilder();
sb.Append("-o -"); // output to standard output as opposed to a file.
sb.Append($" -t {(CaptureTimeoutMilliseconds < 0 ? "0" : CaptureTimeoutMilliseconds.ToString(Ci))}");
// Basic Width and height
if (CaptureWidth > 0 && CaptureHeight > 0)
{
sb.Append($" -w {CaptureWidth.ToString(Ci)}");
sb.Append($" -h {CaptureHeight.ToString(Ci)}");
}
// Display Preview
if (CaptureDisplayPreview)
{
if (CaptureDisplayPreviewInFullScreen)
sb.Append(" -f");
if (CaptureDisplayPreviewOpacity != byte.MaxValue)
sb.Append($" -op {CaptureDisplayPreviewOpacity.ToString(Ci)}");
}
else
{
sb.Append(" -n"); // no preview
}
// Picture Settings
if (ImageSharpness != 0)
sb.Append($" -sh {ImageSharpness.Clamp(-100, 100).ToString(Ci)}");
if (ImageContrast != 0)
sb.Append($" -co {ImageContrast.Clamp(-100, 100).ToString(Ci)}");
if (ImageBrightness != 50)
sb.Append($" -br {ImageBrightness.Clamp(0, 100).ToString(Ci)}");
if (ImageSaturation != 0)
sb.Append($" -sa {ImageSaturation.Clamp(-100, 100).ToString(Ci)}");
if (ImageIso >= 100)
sb.Append($" -ISO {ImageIso.Clamp(100, 800).ToString(Ci)}");
if (CaptureVideoStabilizationEnabled)
sb.Append(" -vs");
if (CaptureExposureCompensation != 0)
sb.Append($" -ev {CaptureExposureCompensation.Clamp(-10, 10).ToString(Ci)}");
if (CaptureExposure != CameraExposureMode.Auto)
sb.Append($" -ex {CaptureExposure.ToString().ToLowerInvariant()}");
if (CaptureWhiteBalanceControl != CameraWhiteBalanceMode.Auto)
sb.Append($" -awb {CaptureWhiteBalanceControl.ToString().ToLowerInvariant()}");
if (ImageEffect != CameraImageEffect.None)
sb.Append($" -ifx {ImageEffect.ToString().ToLowerInvariant()}");
if (ImageColorEffectU >= 0 && ImageColorEffectV >= 0)
{
sb.Append(
$" -cfx {ImageColorEffectU.Clamp(0, 255).ToString(Ci)}:{ImageColorEffectV.Clamp(0, 255).ToString(Ci)}");
}
if (CaptureMeteringMode != CameraMeteringMode.Average)
sb.Append($" -mm {CaptureMeteringMode.ToString().ToLowerInvariant()}");
if (ImageRotation != CameraImageRotation.None)
sb.Append($" -rot {((int)ImageRotation).ToString(Ci)}");
if (ImageFlipHorizontally)
sb.Append(" -hf");
if (ImageFlipVertically)
sb.Append(" -vf");
if (CaptureSensorRoi.IsDefault == false)
sb.Append($" -roi {CaptureSensorRoi}");
if (CaptureShutterSpeedMicroseconds > 0)
sb.Append($" -ss {CaptureShutterSpeedMicroseconds.Clamp(0, 6000000).ToString(Ci)}");
if (CaptureDynamicRangeCompensation != CameraDynamicRangeCompensation.Off)
sb.Append($" -drc {CaptureDynamicRangeCompensation.ToString().ToLowerInvariant()}");
if (CaptureWhiteBalanceControl == CameraWhiteBalanceMode.Off &&
(CaptureWhiteBalanceGainBlue != 0M || CaptureWhiteBalanceGainRed != 0M))
sb.Append($" -awbg {CaptureWhiteBalanceGainBlue.ToString(Ci)},{CaptureWhiteBalanceGainRed.ToString(Ci)}");
if (ImageAnnotationFontSize > 0)
{
sb.Append($" -ae {ImageAnnotationFontSize.Clamp(6, 160).ToString(Ci)}");
sb.Append($",{(ImageAnnotationFontColor == null ? "0xff" : ImageAnnotationFontColor.ToYuvHex(true))}");
if (ImageAnnotationBackground != null)
{
ImageAnnotations |= CameraAnnotation.SolidBackground;
sb.Append($",{ImageAnnotationBackground.ToYuvHex(true)}");
}
}
if (ImageAnnotations != CameraAnnotation.None)
sb.Append($" -a {((int)ImageAnnotations).ToString(Ci)}");
if (string.IsNullOrWhiteSpace(ImageAnnotationsText) == false)
sb.Append($" -a \"{ImageAnnotationsText.Replace("\"", "'")}\"");
return sb.ToString();
}
#endregion
}
protected static readonly CultureInfo Ci = CultureInfo.InvariantCulture;
#region Capture Settings
/// <summary>
/// Gets or sets the timeout milliseconds.
/// Default value is 5000
/// Recommended value is at least 300 in order to let the light collectors open
/// </summary>
public Int32 CaptureTimeoutMilliseconds { get; set; } = 5000;
/// <summary>
/// Gets or sets a value indicating whether or not to show a preview window on the screen
/// </summary>
public Boolean CaptureDisplayPreview { get; set; } = false;
/// <summary>
/// Gets or sets a value indicating whether a preview window is shown in full screen mode if enabled
/// </summary>
public Boolean CaptureDisplayPreviewInFullScreen { get; set; } = true;
/// <summary>
/// Gets or sets a value indicating whether video stabilization should be enabled.
/// </summary>
public Boolean CaptureVideoStabilizationEnabled { get; set; } = false;
/// <summary>
/// Gets or sets the display preview opacity only if the display preview property is enabled.
/// </summary>
public Byte CaptureDisplayPreviewOpacity { get; set; } = 255;
/// <summary>
/// Gets or sets the capture sensor region of interest in relative coordinates.
/// </summary>
public CameraRect CaptureSensorRoi { get; set; } = CameraRect.Default;
/// <summary>
/// Gets or sets the capture shutter speed in microseconds.
/// Default -1, Range 0 to 6000000 (equivalent to 6 seconds)
/// </summary>
public Int32 CaptureShutterSpeedMicroseconds { get; set; } = -1;
/// <summary>
/// Gets or sets the exposure mode.
/// </summary>
public CameraExposureMode CaptureExposure { get; set; } = CameraExposureMode.Auto;
/// <summary>
/// Gets or sets the picture EV compensation. Default is 0, Range is -10 to 10
/// Camera exposure compensation is commonly stated in terms of EV units;
/// 1 EV is equal to one exposure step (or stop), corresponding to a doubling of exposure.
/// Exposure can be adjusted by changing either the lens f-number or the exposure time;
/// which one is changed usually depends on the camera's exposure mode.
/// </summary>
public Int32 CaptureExposureCompensation { get; set; } = 0;
/// <summary>
/// Gets or sets the capture metering mode.
/// </summary>
public CameraMeteringMode CaptureMeteringMode { get; set; } = CameraMeteringMode.Average;
/// <summary>
/// Gets or sets the automatic white balance mode. By default it is set to Auto
/// </summary>
public CameraWhiteBalanceMode CaptureWhiteBalanceControl { get; set; } = CameraWhiteBalanceMode.Auto;
/// <summary>
/// Gets or sets the capture white balance gain on the blue channel. Example: 1.25
/// Only takes effect if White balance control is set to off.
/// Default is 0
/// </summary>
public Decimal CaptureWhiteBalanceGainBlue { get; set; } = 0M;
/// <summary>
/// Gets or sets the capture white balance gain on the red channel. Example: 1.75
/// Only takes effect if White balance control is set to off.
/// Default is 0
/// </summary>
public Decimal CaptureWhiteBalanceGainRed { get; set; } = 0M;
/// <summary>
/// Gets or sets the dynamic range compensation.
/// DRC changes the images by increasing the range of dark areas, and decreasing the brighter areas. This can improve the image in low light areas.
/// </summary>
public CameraDynamicRangeCompensation CaptureDynamicRangeCompensation {
get; set;
} =
CameraDynamicRangeCompensation.Off;
#endregion
#region Image Properties
/// <summary>
/// Gets or sets the width of the picture to take.
/// Less than or equal to 0 in either width or height means maximum resolution available.
/// </summary>
public Int32 CaptureWidth { get; set; } = 640;
/// <summary>
/// Gets or sets the height of the picture to take.
/// Less than or equal to 0 in either width or height means maximum resolution available.
/// </summary>
public Int32 CaptureHeight { get; set; } = 480;
/// <summary>
/// Gets or sets the picture sharpness. Default is 0, Range form -100 to 100
/// </summary>
public Int32 ImageSharpness { get; set; } = 0;
/// <summary>
/// Gets or sets the picture contrast. Default is 0, Range form -100 to 100
/// </summary>
public Int32 ImageContrast { get; set; } = 0;
/// <summary>
/// Gets or sets the picture brightness. Default is 50, Range form 0 to 100
/// </summary>
public Int32 ImageBrightness { get; set; } = 50; // from 0 to 100
/// <summary>
/// Gets or sets the picture saturation. Default is 0, Range form -100 to 100
/// </summary>
public Int32 ImageSaturation { get; set; } = 0;
/// <summary>
/// Gets or sets the picture ISO. Default is -1 Range is 100 to 800
/// The higher the value, the more light the sensor absorbs
/// </summary>
public Int32 ImageIso { get; set; } = -1;
/// <summary>
/// Gets or sets the image capture effect to be applied.
/// </summary>
public CameraImageEffect ImageEffect { get; set; } = CameraImageEffect.None;
/// <summary>
/// Gets or sets the color effect U coordinates.
/// Default is -1, Range is 0 to 255
/// 128:128 should be effectively a monochrome image.
/// </summary>
public Int32 ImageColorEffectU { get; set; } = -1; // 0 to 255
/// <summary>
/// Gets or sets the color effect V coordinates.
/// Default is -1, Range is 0 to 255
/// 128:128 should be effectively a monochrome image.
/// </summary>
public Int32 ImageColorEffectV { get; set; } = -1; // 0 to 255
/// <summary>
/// Gets or sets the image rotation. Default is no rotation
/// </summary>
public CameraImageRotation ImageRotation { get; set; } = CameraImageRotation.None;
/// <summary>
/// Gets or sets a value indicating whether the image should be flipped horizontally.
/// </summary>
public Boolean ImageFlipHorizontally {
get; set;
}
/// <summary>
/// Gets or sets a value indicating whether the image should be flipped vertically.
/// </summary>
public Boolean ImageFlipVertically {
get; set;
}
/// <summary>
/// Gets or sets the image annotations using a bitmask (or flags) notation.
/// Apply a bitwise OR to the enumeration to include multiple annotations
/// </summary>
public CameraAnnotation ImageAnnotations { get; set; } = CameraAnnotation.None;
/// <summary>
/// Gets or sets the image annotations text.
/// Text may include date/time placeholders by using the '%' character, as used by strftime.
/// Example: ABC %Y-%m-%d %X will output ABC 2015-10-28 20:09:33
/// </summary>
public String ImageAnnotationsText { get; set; } = String.Empty;
/// <summary>
/// Gets or sets the font size of the text annotations
/// Default is -1, range is 6 to 160
/// </summary>
public Int32 ImageAnnotationFontSize { get; set; } = -1;
/// <summary>
/// Gets or sets the color of the text annotations.
/// </summary>
/// <value>
/// The color of the image annotation font.
/// </value>
public CameraColor ImageAnnotationFontColor { get; set; } = null;
/// <summary>
/// Gets or sets the background color for text annotations.
/// </summary>
/// <value>
/// The image annotation background.
/// </value>
public CameraColor ImageAnnotationBackground { get; set; } = null;
#endregion
#region Interface
/// <summary>
/// Gets the command file executable.
/// </summary>
public abstract String CommandName {
get;
}
/// <summary>
/// Creates the process arguments.
/// </summary>
/// <returns>The string that represents the process arguments</returns>
public virtual String CreateProcessArguments() {
StringBuilder sb = new StringBuilder();
_ = sb.Append("-o -"); // output to standard output as opposed to a file.
_ = sb.Append($" -t {(this.CaptureTimeoutMilliseconds < 0 ? "0" : this.CaptureTimeoutMilliseconds.ToString(Ci))}");
// Basic Width and height
if(this.CaptureWidth > 0 && this.CaptureHeight > 0) {
_ = sb.Append($" -w {this.CaptureWidth.ToString(Ci)}");
_ = sb.Append($" -h {this.CaptureHeight.ToString(Ci)}");
}
// Display Preview
if(this.CaptureDisplayPreview) {
if(this.CaptureDisplayPreviewInFullScreen) {
_ = sb.Append(" -f");
}
if(this.CaptureDisplayPreviewOpacity != Byte.MaxValue) {
_ = sb.Append($" -op {this.CaptureDisplayPreviewOpacity.ToString(Ci)}");
}
} else {
_ = sb.Append(" -n"); // no preview
}
// Picture Settings
if(this.ImageSharpness != 0) {
_ = sb.Append($" -sh {this.ImageSharpness.Clamp(-100, 100).ToString(Ci)}");
}
if(this.ImageContrast != 0) {
_ = sb.Append($" -co {this.ImageContrast.Clamp(-100, 100).ToString(Ci)}");
}
if(this.ImageBrightness != 50) {
_ = sb.Append($" -br {this.ImageBrightness.Clamp(0, 100).ToString(Ci)}");
}
if(this.ImageSaturation != 0) {
_ = sb.Append($" -sa {this.ImageSaturation.Clamp(-100, 100).ToString(Ci)}");
}
if(this.ImageIso >= 100) {
_ = sb.Append($" -ISO {this.ImageIso.Clamp(100, 800).ToString(Ci)}");
}
if(this.CaptureVideoStabilizationEnabled) {
_ = sb.Append(" -vs");
}
if(this.CaptureExposureCompensation != 0) {
_ = sb.Append($" -ev {this.CaptureExposureCompensation.Clamp(-10, 10).ToString(Ci)}");
}
if(this.CaptureExposure != CameraExposureMode.Auto) {
_ = sb.Append($" -ex {this.CaptureExposure.ToString().ToLowerInvariant()}");
}
if(this.CaptureWhiteBalanceControl != CameraWhiteBalanceMode.Auto) {
_ = sb.Append($" -awb {this.CaptureWhiteBalanceControl.ToString().ToLowerInvariant()}");
}
if(this.ImageEffect != CameraImageEffect.None) {
_ = sb.Append($" -ifx {this.ImageEffect.ToString().ToLowerInvariant()}");
}
if(this.ImageColorEffectU >= 0 && this.ImageColorEffectV >= 0) {
_ = sb.Append(
$" -cfx {this.ImageColorEffectU.Clamp(0, 255).ToString(Ci)}:{this.ImageColorEffectV.Clamp(0, 255).ToString(Ci)}");
}
if(this.CaptureMeteringMode != CameraMeteringMode.Average) {
_ = sb.Append($" -mm {this.CaptureMeteringMode.ToString().ToLowerInvariant()}");
}
if(this.ImageRotation != CameraImageRotation.None) {
_ = sb.Append($" -rot {((Int32)this.ImageRotation).ToString(Ci)}");
}
if(this.ImageFlipHorizontally) {
_ = sb.Append(" -hf");
}
if(this.ImageFlipVertically) {
_ = sb.Append(" -vf");
}
if(this.CaptureSensorRoi.IsDefault == false) {
_ = sb.Append($" -roi {this.CaptureSensorRoi}");
}
if(this.CaptureShutterSpeedMicroseconds > 0) {
_ = sb.Append($" -ss {this.CaptureShutterSpeedMicroseconds.Clamp(0, 6000000).ToString(Ci)}");
}
if(this.CaptureDynamicRangeCompensation != CameraDynamicRangeCompensation.Off) {
_ = sb.Append($" -drc {this.CaptureDynamicRangeCompensation.ToString().ToLowerInvariant()}");
}
if(this.CaptureWhiteBalanceControl == CameraWhiteBalanceMode.Off &&
(this.CaptureWhiteBalanceGainBlue != 0M || this.CaptureWhiteBalanceGainRed != 0M)) {
_ = sb.Append($" -awbg {this.CaptureWhiteBalanceGainBlue.ToString(Ci)},{this.CaptureWhiteBalanceGainRed.ToString(Ci)}");
}
if(this.ImageAnnotationFontSize > 0) {
_ = sb.Append($" -ae {this.ImageAnnotationFontSize.Clamp(6, 160).ToString(Ci)}");
_ = sb.Append($",{(this.ImageAnnotationFontColor == null ? "0xff" : this.ImageAnnotationFontColor.ToYuvHex(true))}");
if(this.ImageAnnotationBackground != null) {
this.ImageAnnotations |= CameraAnnotation.SolidBackground;
_ = sb.Append($",{this.ImageAnnotationBackground.ToYuvHex(true)}");
}
}
if(this.ImageAnnotations != CameraAnnotation.None) {
_ = sb.Append($" -a {((Int32)this.ImageAnnotations).ToString(Ci)}");
}
if(String.IsNullOrWhiteSpace(this.ImageAnnotationsText) == false) {
_ = sb.Append($" -a \"{this.ImageAnnotationsText.Replace("\"", "'")}\"");
}
return sb.ToString();
}
#endregion
}
}

View File

@ -1,120 +1,121 @@
namespace Unosquare.RaspberryIO.Camera
{
using Swan;
using System;
using System.Collections.Generic;
using System.Text;
using Unosquare.Swan;
using System;
using System.Collections.Generic;
using System.Text;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// Defines a wrapper for the raspistill program and its settings (command-line arguments)
/// </summary>
/// <seealso cref="CameraSettingsBase" />
public class CameraStillSettings : CameraSettingsBase {
private Int32 _rotate;
/// <inheritdoc />
public override String CommandName => "raspistill";
/// <summary>
/// Defines a wrapper for the raspistill program and its settings (command-line arguments)
/// Gets or sets a value indicating whether the preview window (if enabled) uses native capture resolution
/// This may slow down preview FPS
/// </summary>
/// <seealso cref="CameraSettingsBase" />
public class CameraStillSettings : CameraSettingsBase
{
private int _rotate;
/// <inheritdoc />
public override string CommandName => "raspistill";
/// <summary>
/// Gets or sets a value indicating whether the preview window (if enabled) uses native capture resolution
/// This may slow down preview FPS
/// </summary>
public bool CaptureDisplayPreviewAtResolution { get; set; } = false;
/// <summary>
/// Gets or sets the encoding format the hardware will use for the output.
/// </summary>
public CameraImageEncodingFormat CaptureEncoding { get; set; } = CameraImageEncodingFormat.Jpg;
/// <summary>
/// Gets or sets the quality for JPEG only encoding mode.
/// Value ranges from 0 to 100
/// </summary>
public int CaptureJpegQuality { get; set; } = 90;
/// <summary>
/// Gets or sets a value indicating whether the JPEG encoder should add raw bayer metadata.
/// </summary>
public bool CaptureJpegIncludeRawBayerMetadata { get; set; } = false;
/// <summary>
/// JPEG EXIF data
/// Keys and values must be already properly escaped. Otherwise the command will fail.
/// </summary>
public Dictionary<string, string> CaptureJpegExtendedInfo { get; } = new Dictionary<string, string>();
/// <summary>
/// Gets or sets a value indicating whether [horizontal flip].
/// </summary>
/// <value>
/// <c>true</c> if [horizontal flip]; otherwise, <c>false</c>.
/// </value>
public bool HorizontalFlip { get; set; } = false;
/// <summary>
/// Gets or sets a value indicating whether [vertical flip].
/// </summary>
/// <value>
/// <c>true</c> if [vertical flip]; otherwise, <c>false</c>.
/// </value>
public bool VerticalFlip { get; set; } = false;
/// <summary>
/// Gets or sets the rotation.
/// </summary>
/// <exception cref="ArgumentOutOfRangeException">Valid range 0-359</exception>
public int Rotation
{
get => _rotate;
set
{
if (value < 0 || value > 359)
{
throw new ArgumentOutOfRangeException(nameof(value), "Valid range 0-359");
}
_rotate = value;
}
}
/// <inheritdoc />
public override string CreateProcessArguments()
{
var sb = new StringBuilder(base.CreateProcessArguments());
sb.Append($" -e {CaptureEncoding.ToString().ToLowerInvariant()}");
// JPEG Encoder specific arguments
if (CaptureEncoding == CameraImageEncodingFormat.Jpg)
{
sb.Append($" -q {CaptureJpegQuality.Clamp(0, 100).ToString(Ci)}");
if (CaptureJpegIncludeRawBayerMetadata)
sb.Append(" -r");
// JPEG EXIF data
if (CaptureJpegExtendedInfo.Count > 0)
{
foreach (var kvp in CaptureJpegExtendedInfo)
{
if (string.IsNullOrWhiteSpace(kvp.Key) || string.IsNullOrWhiteSpace(kvp.Value))
continue;
sb.Append($" -x \"{kvp.Key.Replace("\"", "'")}={kvp.Value.Replace("\"", "'")}\"");
}
}
}
// Display preview settings
if (CaptureDisplayPreview && CaptureDisplayPreviewAtResolution) sb.Append(" -fp");
if (Rotation != 0) sb.Append($" -rot {Rotation}");
if (HorizontalFlip) sb.Append(" -hf");
if (VerticalFlip) sb.Append(" -vf");
return sb.ToString();
}
}
public Boolean CaptureDisplayPreviewAtResolution { get; set; } = false;
/// <summary>
/// Gets or sets the encoding format the hardware will use for the output.
/// </summary>
public CameraImageEncodingFormat CaptureEncoding { get; set; } = CameraImageEncodingFormat.Jpg;
/// <summary>
/// Gets or sets the quality for JPEG only encoding mode.
/// Value ranges from 0 to 100
/// </summary>
public Int32 CaptureJpegQuality { get; set; } = 90;
/// <summary>
/// Gets or sets a value indicating whether the JPEG encoder should add raw bayer metadata.
/// </summary>
public Boolean CaptureJpegIncludeRawBayerMetadata { get; set; } = false;
/// <summary>
/// JPEG EXIF data
/// Keys and values must be already properly escaped. Otherwise the command will fail.
/// </summary>
public Dictionary<String, String> CaptureJpegExtendedInfo { get; } = new Dictionary<String, String>();
/// <summary>
/// Gets or sets a value indicating whether [horizontal flip].
/// </summary>
/// <value>
/// <c>true</c> if [horizontal flip]; otherwise, <c>false</c>.
/// </value>
public Boolean HorizontalFlip { get; set; } = false;
/// <summary>
/// Gets or sets a value indicating whether [vertical flip].
/// </summary>
/// <value>
/// <c>true</c> if [vertical flip]; otherwise, <c>false</c>.
/// </value>
public Boolean VerticalFlip { get; set; } = false;
/// <summary>
/// Gets or sets the rotation.
/// </summary>
/// <exception cref="ArgumentOutOfRangeException">Valid range 0-359</exception>
public Int32 Rotation {
get => this._rotate;
set {
if(value < 0 || value > 359) {
throw new ArgumentOutOfRangeException(nameof(value), "Valid range 0-359");
}
this._rotate = value;
}
}
/// <inheritdoc />
public override String CreateProcessArguments() {
StringBuilder sb = new StringBuilder(base.CreateProcessArguments());
_ = sb.Append($" -e {this.CaptureEncoding.ToString().ToLowerInvariant()}");
// JPEG Encoder specific arguments
if(this.CaptureEncoding == CameraImageEncodingFormat.Jpg) {
_ = sb.Append($" -q {this.CaptureJpegQuality.Clamp(0, 100).ToString(Ci)}");
if(this.CaptureJpegIncludeRawBayerMetadata) {
_ = sb.Append(" -r");
}
// JPEG EXIF data
if(this.CaptureJpegExtendedInfo.Count > 0) {
foreach(KeyValuePair<String, String> kvp in this.CaptureJpegExtendedInfo) {
if(String.IsNullOrWhiteSpace(kvp.Key) || String.IsNullOrWhiteSpace(kvp.Value)) {
continue;
}
_ = sb.Append($" -x \"{kvp.Key.Replace("\"", "'")}={kvp.Value.Replace("\"", "'")}\"");
}
}
}
// Display preview settings
if(this.CaptureDisplayPreview && this.CaptureDisplayPreviewAtResolution) {
_ = sb.Append(" -fp");
}
if(this.Rotation != 0) {
_ = sb.Append($" -rot {this.Rotation}");
}
if(this.HorizontalFlip) {
_ = sb.Append(" -hf");
}
if(this.VerticalFlip) {
_ = sb.Append(" -vf");
}
return sb.ToString();
}
}
}

View File

@ -1,94 +1,98 @@
namespace Unosquare.RaspberryIO.Camera
{
using Swan;
using System.Text;
using Unosquare.Swan;
using System;
using System.Text;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// Represents the raspivid camera settings for video capture functionality
/// </summary>
/// <seealso cref="CameraSettingsBase" />
public class CameraVideoSettings : CameraSettingsBase {
/// <inheritdoc />
public override String CommandName => "raspivid";
/// <summary>
/// Represents the raspivid camera settings for video capture functionality
/// Use bits per second, so 10Mbits/s would be -b 10000000. For H264, 1080p30 a high quality bitrate would be 15Mbits/s or more.
/// Maximum bitrate is 25Mbits/s (-b 25000000), but much over 17Mbits/s won't show noticeable improvement at 1080p30.
/// Default -1
/// </summary>
/// <seealso cref="CameraSettingsBase" />
public class CameraVideoSettings : CameraSettingsBase
{
/// <inheritdoc />
public override string CommandName => "raspivid";
/// <summary>
/// Use bits per second, so 10Mbits/s would be -b 10000000. For H264, 1080p30 a high quality bitrate would be 15Mbits/s or more.
/// Maximum bitrate is 25Mbits/s (-b 25000000), but much over 17Mbits/s won't show noticeable improvement at 1080p30.
/// Default -1
/// </summary>
public int CaptureBitrate { get; set; } = -1;
/// <summary>
/// Gets or sets the framerate.
/// Default 25, range 2 to 30
/// </summary>
public int CaptureFramerate { get; set; } = 25;
/// <summary>
/// Sets the intra refresh period (GoP) rate for the recorded video. H264 video uses a complete frame (I-frame) every intra
/// refresh period, from which subsequent frames are based. This option specifies the number of frames between each I-frame.
/// Larger numbers here will reduce the size of the resulting video, and smaller numbers make the stream less error-prone.
/// </summary>
public int CaptureKeyframeRate { get; set; } = 25;
/// <summary>
/// Sets the initial quantisation parameter for the stream. Varies from approximately 10 to 40, and will greatly affect
/// the quality of the recording. Higher values reduce quality and decrease file size. Combine this setting with a
/// bitrate of 0 to set a completely variable bitrate.
/// </summary>
public int CaptureQuantisation { get; set; } = 23;
/// <summary>
/// Gets or sets the profile.
/// Sets the H264 profile to be used for the encoding.
/// Default is Main mode
/// </summary>
public CameraH264Profile CaptureProfile { get; set; } = CameraH264Profile.Main;
/// <summary>
/// Forces the stream to include PPS and SPS headers on every I-frame. Needed for certain streaming cases
/// e.g. Apple HLS. These headers are small, so don't greatly increase the file size.
/// </summary>
/// <value>
/// <c>true</c> if [interleave headers]; otherwise, <c>false</c>.
/// </value>
public bool CaptureInterleaveHeaders { get; set; } = true;
/// <summary>
/// Switch on an option to display the preview after compression. This will show any compression artefacts in the preview window. In normal operation,
/// the preview will show the camera output prior to being compressed. This option is not guaranteed to work in future releases.
/// </summary>
/// <value>
/// <c>true</c> if [capture display preview encoded]; otherwise, <c>false</c>.
/// </value>
public bool CaptureDisplayPreviewEncoded { get; set; } = false;
/// <inheritdoc />
public override string CreateProcessArguments()
{
var sb = new StringBuilder(base.CreateProcessArguments());
sb.Append($" -pf {CaptureProfile.ToString().ToLowerInvariant()}");
if (CaptureBitrate < 0)
sb.Append($" -b {CaptureBitrate.Clamp(0, 25000000).ToString(Ci)}");
if (CaptureFramerate >= 2)
sb.Append($" -fps {CaptureFramerate.Clamp(2, 30).ToString(Ci)}");
if (CaptureDisplayPreview && CaptureDisplayPreviewEncoded)
sb.Append(" -e");
if (CaptureKeyframeRate > 0)
sb.Append($" -g {CaptureKeyframeRate.ToString(Ci)}");
if (CaptureQuantisation >= 0)
sb.Append($" -qp {CaptureQuantisation.Clamp(0, 40).ToString(Ci)}");
if (CaptureInterleaveHeaders)
sb.Append(" -ih");
return sb.ToString();
}
}
public Int32 CaptureBitrate { get; set; } = -1;
/// <summary>
/// Gets or sets the framerate.
/// Default 25, range 2 to 30
/// </summary>
public Int32 CaptureFramerate { get; set; } = 25;
/// <summary>
/// Sets the intra refresh period (GoP) rate for the recorded video. H264 video uses a complete frame (I-frame) every intra
/// refresh period, from which subsequent frames are based. This option specifies the number of frames between each I-frame.
/// Larger numbers here will reduce the size of the resulting video, and smaller numbers make the stream less error-prone.
/// </summary>
public Int32 CaptureKeyframeRate { get; set; } = 25;
/// <summary>
/// Sets the initial quantisation parameter for the stream. Varies from approximately 10 to 40, and will greatly affect
/// the quality of the recording. Higher values reduce quality and decrease file size. Combine this setting with a
/// bitrate of 0 to set a completely variable bitrate.
/// </summary>
public Int32 CaptureQuantisation { get; set; } = 23;
/// <summary>
/// Gets or sets the profile.
/// Sets the H264 profile to be used for the encoding.
/// Default is Main mode
/// </summary>
public CameraH264Profile CaptureProfile { get; set; } = CameraH264Profile.Main;
/// <summary>
/// Forces the stream to include PPS and SPS headers on every I-frame. Needed for certain streaming cases
/// e.g. Apple HLS. These headers are small, so don't greatly increase the file size.
/// </summary>
/// <value>
/// <c>true</c> if [interleave headers]; otherwise, <c>false</c>.
/// </value>
public Boolean CaptureInterleaveHeaders { get; set; } = true;
/// <summary>
/// Switch on an option to display the preview after compression. This will show any compression artefacts in the preview window. In normal operation,
/// the preview will show the camera output prior to being compressed. This option is not guaranteed to work in future releases.
/// </summary>
/// <value>
/// <c>true</c> if [capture display preview encoded]; otherwise, <c>false</c>.
/// </value>
public Boolean CaptureDisplayPreviewEncoded { get; set; } = false;
/// <inheritdoc />
public override String CreateProcessArguments() {
StringBuilder sb = new StringBuilder(base.CreateProcessArguments());
_ = sb.Append($" -pf {this.CaptureProfile.ToString().ToLowerInvariant()}");
if(this.CaptureBitrate < 0) {
_ = sb.Append($" -b {this.CaptureBitrate.Clamp(0, 25000000).ToString(Ci)}");
}
if(this.CaptureFramerate >= 2) {
_ = sb.Append($" -fps {this.CaptureFramerate.Clamp(2, 30).ToString(Ci)}");
}
if(this.CaptureDisplayPreview && this.CaptureDisplayPreviewEncoded) {
_ = sb.Append(" -e");
}
if(this.CaptureKeyframeRate > 0) {
_ = sb.Append($" -g {this.CaptureKeyframeRate.ToString(Ci)}");
}
if(this.CaptureQuantisation >= 0) {
_ = sb.Append($" -qp {this.CaptureQuantisation.Clamp(0, 40).ToString(Ci)}");
}
if(this.CaptureInterleaveHeaders) {
_ = sb.Append(" -ih");
}
return sb.ToString();
}
}
}

View File

@ -1,423 +1,413 @@
namespace Unosquare.RaspberryIO.Camera
{
using System;
using System;
namespace Unosquare.RaspberryIO.Camera {
/// <summary>
/// Defines the available encoding formats for the Raspberry Pi camera module
/// </summary>
public enum CameraImageEncodingFormat {
/// <summary>
/// Defines the available encoding formats for the Raspberry Pi camera module
/// The JPG
/// </summary>
public enum CameraImageEncodingFormat
{
/// <summary>
/// The JPG
/// </summary>
Jpg,
/// <summary>
/// The BMP
/// </summary>
Bmp,
/// <summary>
/// The GIF
/// </summary>
Gif,
/// <summary>
/// The PNG
/// </summary>
Png,
}
Jpg,
/// <summary>
/// Defines the different exposure modes for the Raspberry Pi's camera module
/// The BMP
/// </summary>
public enum CameraExposureMode
{
/// <summary>
/// The automatic
/// </summary>
Auto,
/// <summary>
/// The night
/// </summary>
Night,
/// <summary>
/// The night preview
/// </summary>
NightPreview,
/// <summary>
/// The backlight
/// </summary>
Backlight,
/// <summary>
/// The spotlight
/// </summary>
Spotlight,
/// <summary>
/// The sports
/// </summary>
Sports,
/// <summary>
/// The snow
/// </summary>
Snow,
/// <summary>
/// The beach
/// </summary>
Beach,
/// <summary>
/// The very long
/// </summary>
VeryLong,
/// <summary>
/// The fixed FPS
/// </summary>
FixedFps,
/// <summary>
/// The anti shake
/// </summary>
AntiShake,
/// <summary>
/// The fireworks
/// </summary>
Fireworks
}
Bmp,
/// <summary>
/// Defines the different AWB (Auto White Balance) modes for the Raspberry Pi's camera module
/// The GIF
/// </summary>
public enum CameraWhiteBalanceMode
{
/// <summary>
/// No white balance
/// </summary>
Off,
/// <summary>
/// The automatic
/// </summary>
Auto,
/// <summary>
/// The sun
/// </summary>
Sun,
/// <summary>
/// The cloud
/// </summary>
Cloud,
/// <summary>
/// The shade
/// </summary>
Shade,
/// <summary>
/// The tungsten
/// </summary>
Tungsten,
/// <summary>
/// The fluorescent
/// </summary>
Fluorescent,
/// <summary>
/// The incandescent
/// </summary>
Incandescent,
/// <summary>
/// The flash
/// </summary>
Flash,
/// <summary>
/// The horizon
/// </summary>
Horizon
}
Gif,
/// <summary>
/// Defines the available image effects for the Raspberry Pi's camera module
/// The PNG
/// </summary>
public enum CameraImageEffect
{
/// <summary>
/// No effect
/// </summary>
None,
/// <summary>
/// The negative
/// </summary>
Negative,
/// <summary>
/// The solarise
/// </summary>
Solarise,
/// <summary>
/// The whiteboard
/// </summary>
Whiteboard,
/// <summary>
/// The blackboard
/// </summary>
Blackboard,
/// <summary>
/// The sketch
/// </summary>
Sketch,
/// <summary>
/// The denoise
/// </summary>
Denoise,
/// <summary>
/// The emboss
/// </summary>
Emboss,
/// <summary>
/// The oil paint
/// </summary>
OilPaint,
/// <summary>
/// The hatch
/// </summary>
Hatch,
/// <summary>
/// Graphite Pen
/// </summary>
GPen,
/// <summary>
/// The pastel
/// </summary>
Pastel,
/// <summary>
/// The water colour
/// </summary>
WaterColour,
/// <summary>
/// The film
/// </summary>
Film,
/// <summary>
/// The blur
/// </summary>
Blur,
/// <summary>
/// The saturation
/// </summary>
Saturation,
/// <summary>
/// The solour swap
/// </summary>
SolourSwap,
/// <summary>
/// The washed out
/// </summary>
WashedOut,
/// <summary>
/// The colour point
/// </summary>
ColourPoint,
/// <summary>
/// The colour balance
/// </summary>
ColourBalance,
/// <summary>
/// The cartoon
/// </summary>
Cartoon
}
Png,
}
/// <summary>
/// Defines the different exposure modes for the Raspberry Pi's camera module
/// </summary>
public enum CameraExposureMode {
/// <summary>
/// Defines the different metering modes for the Raspberry Pi's camera module
/// The automatic
/// </summary>
public enum CameraMeteringMode
{
/// <summary>
/// The average
/// </summary>
Average,
/// <summary>
/// The spot
/// </summary>
Spot,
/// <summary>
/// The backlit
/// </summary>
Backlit,
/// <summary>
/// The matrix
/// </summary>
Matrix,
}
Auto,
/// <summary>
/// Defines the different image rotation modes for the Raspberry Pi's camera module
/// The night
/// </summary>
public enum CameraImageRotation
{
/// <summary>
/// No rerotation
/// </summary>
None = 0,
/// <summary>
/// 90 Degrees
/// </summary>
Degrees90 = 90,
/// <summary>
/// 180 Degrees
/// </summary>
Degrees180 = 180,
/// <summary>
/// 270 degrees
/// </summary>
Degrees270 = 270
}
Night,
/// <summary>
/// Defines the different DRC (Dynamic Range Compensation) modes for the Raspberry Pi's camera module
/// Helpful for low light photos
/// The night preview
/// </summary>
public enum CameraDynamicRangeCompensation
{
/// <summary>
/// The off setting
/// </summary>
Off,
/// <summary>
/// The low
/// </summary>
Low,
/// <summary>
/// The medium
/// </summary>
Medium,
/// <summary>
/// The high
/// </summary>
High
}
NightPreview,
/// <summary>
/// Defines the bit-wise mask flags for the available annotation elements for the Raspberry Pi's camera module
/// The backlight
/// </summary>
[Flags]
public enum CameraAnnotation
{
/// <summary>
/// The none
/// </summary>
None = 0,
/// <summary>
/// The time
/// </summary>
Time = 4,
/// <summary>
/// The date
/// </summary>
Date = 8,
/// <summary>
/// The shutter settings
/// </summary>
ShutterSettings = 16,
/// <summary>
/// The caf settings
/// </summary>
CafSettings = 32,
/// <summary>
/// The gain settings
/// </summary>
GainSettings = 64,
/// <summary>
/// The lens settings
/// </summary>
LensSettings = 128,
/// <summary>
/// The motion settings
/// </summary>
MotionSettings = 256,
/// <summary>
/// The frame number
/// </summary>
FrameNumber = 512,
/// <summary>
/// The solid background
/// </summary>
SolidBackground = 1024,
}
Backlight,
/// <summary>
/// Defines the different H.264 encoding profiles to be used when capturing video.
/// The spotlight
/// </summary>
public enum CameraH264Profile
{
/// <summary>
/// BP: Primarily for lower-cost applications with limited computing resources,
/// this profile is used widely in videoconferencing and mobile applications.
/// </summary>
Baseline,
/// <summary>
/// MP: Originally intended as the mainstream consumer profile for broadcast
/// and storage applications, the importance of this profile faded when the High profile was developed for those applications.
/// </summary>
Main,
/// <summary>
/// HiP: The primary profile for broadcast and disc storage applications, particularly
/// for high-definition television applications (this is the profile adopted into HD DVD and Blu-ray Disc, for example).
/// </summary>
High
}
Spotlight,
/// <summary>
/// The sports
/// </summary>
Sports,
/// <summary>
/// The snow
/// </summary>
Snow,
/// <summary>
/// The beach
/// </summary>
Beach,
/// <summary>
/// The very long
/// </summary>
VeryLong,
/// <summary>
/// The fixed FPS
/// </summary>
FixedFps,
/// <summary>
/// The anti shake
/// </summary>
AntiShake,
/// <summary>
/// The fireworks
/// </summary>
Fireworks
}
/// <summary>
/// Defines the different AWB (Auto White Balance) modes for the Raspberry Pi's camera module
/// </summary>
public enum CameraWhiteBalanceMode {
/// <summary>
/// No white balance
/// </summary>
Off,
/// <summary>
/// The automatic
/// </summary>
Auto,
/// <summary>
/// The sun
/// </summary>
Sun,
/// <summary>
/// The cloud
/// </summary>
Cloud,
/// <summary>
/// The shade
/// </summary>
Shade,
/// <summary>
/// The tungsten
/// </summary>
Tungsten,
/// <summary>
/// The fluorescent
/// </summary>
Fluorescent,
/// <summary>
/// The incandescent
/// </summary>
Incandescent,
/// <summary>
/// The flash
/// </summary>
Flash,
/// <summary>
/// The horizon
/// </summary>
Horizon
}
/// <summary>
/// Defines the available image effects for the Raspberry Pi's camera module
/// </summary>
public enum CameraImageEffect {
/// <summary>
/// No effect
/// </summary>
None,
/// <summary>
/// The negative
/// </summary>
Negative,
/// <summary>
/// The solarise
/// </summary>
Solarise,
/// <summary>
/// The whiteboard
/// </summary>
Whiteboard,
/// <summary>
/// The blackboard
/// </summary>
Blackboard,
/// <summary>
/// The sketch
/// </summary>
Sketch,
/// <summary>
/// The denoise
/// </summary>
Denoise,
/// <summary>
/// The emboss
/// </summary>
Emboss,
/// <summary>
/// The oil paint
/// </summary>
OilPaint,
/// <summary>
/// The hatch
/// </summary>
Hatch,
/// <summary>
/// Graphite Pen
/// </summary>
GPen,
/// <summary>
/// The pastel
/// </summary>
Pastel,
/// <summary>
/// The water colour
/// </summary>
WaterColour,
/// <summary>
/// The film
/// </summary>
Film,
/// <summary>
/// The blur
/// </summary>
Blur,
/// <summary>
/// The saturation
/// </summary>
Saturation,
/// <summary>
/// The solour swap
/// </summary>
SolourSwap,
/// <summary>
/// The washed out
/// </summary>
WashedOut,
/// <summary>
/// The colour point
/// </summary>
ColourPoint,
/// <summary>
/// The colour balance
/// </summary>
ColourBalance,
/// <summary>
/// The cartoon
/// </summary>
Cartoon
}
/// <summary>
/// Defines the different metering modes for the Raspberry Pi's camera module
/// </summary>
public enum CameraMeteringMode {
/// <summary>
/// The average
/// </summary>
Average,
/// <summary>
/// The spot
/// </summary>
Spot,
/// <summary>
/// The backlit
/// </summary>
Backlit,
/// <summary>
/// The matrix
/// </summary>
Matrix,
}
/// <summary>
/// Defines the different image rotation modes for the Raspberry Pi's camera module
/// </summary>
public enum CameraImageRotation {
/// <summary>
/// No rerotation
/// </summary>
None = 0,
/// <summary>
/// 90 Degrees
/// </summary>
Degrees90 = 90,
/// <summary>
/// 180 Degrees
/// </summary>
Degrees180 = 180,
/// <summary>
/// 270 degrees
/// </summary>
Degrees270 = 270
}
/// <summary>
/// Defines the different DRC (Dynamic Range Compensation) modes for the Raspberry Pi's camera module
/// Helpful for low light photos
/// </summary>
public enum CameraDynamicRangeCompensation {
/// <summary>
/// The off setting
/// </summary>
Off,
/// <summary>
/// The low
/// </summary>
Low,
/// <summary>
/// The medium
/// </summary>
Medium,
/// <summary>
/// The high
/// </summary>
High
}
/// <summary>
/// Defines the bit-wise mask flags for the available annotation elements for the Raspberry Pi's camera module
/// </summary>
[Flags]
public enum CameraAnnotation {
/// <summary>
/// The none
/// </summary>
None = 0,
/// <summary>
/// The time
/// </summary>
Time = 4,
/// <summary>
/// The date
/// </summary>
Date = 8,
/// <summary>
/// The shutter settings
/// </summary>
ShutterSettings = 16,
/// <summary>
/// The caf settings
/// </summary>
CafSettings = 32,
/// <summary>
/// The gain settings
/// </summary>
GainSettings = 64,
/// <summary>
/// The lens settings
/// </summary>
LensSettings = 128,
/// <summary>
/// The motion settings
/// </summary>
MotionSettings = 256,
/// <summary>
/// The frame number
/// </summary>
FrameNumber = 512,
/// <summary>
/// The solid background
/// </summary>
SolidBackground = 1024,
}
/// <summary>
/// Defines the different H.264 encoding profiles to be used when capturing video.
/// </summary>
public enum CameraH264Profile {
/// <summary>
/// BP: Primarily for lower-cost applications with limited computing resources,
/// this profile is used widely in videoconferencing and mobile applications.
/// </summary>
Baseline,
/// <summary>
/// MP: Originally intended as the mainstream consumer profile for broadcast
/// and storage applications, the importance of this profile faded when the High profile was developed for those applications.
/// </summary>
Main,
/// <summary>
/// HiP: The primary profile for broadcast and disc storage applications, particularly
/// for high-definition television applications (this is the profile adopted into HD DVD and Blu-ray Disc, for example).
/// </summary>
High
}
}

View File

@ -1,80 +1,66 @@
namespace Unosquare.RaspberryIO.Computer
{
using Swan.Abstractions;
using System.Globalization;
using System.IO;
using Unosquare.Swan.Abstractions;
using System.Globalization;
using System.IO;
using System;
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// The Official Raspberry Pi 7-inch touch display from the foundation
/// Some docs available here:
/// http://forums.pimoroni.com/t/official-7-raspberry-pi-touch-screen-faq/959
/// </summary>
public class DsiDisplay : SingletonBase<DsiDisplay> {
private const String BacklightFilename = "/sys/class/backlight/rpi_backlight/bl_power";
private const String BrightnessFilename = "/sys/class/backlight/rpi_backlight/brightness";
/// <summary>
/// The Official Raspberry Pi 7-inch touch display from the foundation
/// Some docs available here:
/// http://forums.pimoroni.com/t/official-7-raspberry-pi-touch-screen-faq/959
/// Prevents a default instance of the <see cref="DsiDisplay"/> class from being created.
/// </summary>
public class DsiDisplay : SingletonBase<DsiDisplay>
{
private const string BacklightFilename = "/sys/class/backlight/rpi_backlight/bl_power";
private const string BrightnessFilename = "/sys/class/backlight/rpi_backlight/brightness";
/// <summary>
/// Prevents a default instance of the <see cref="DsiDisplay"/> class from being created.
/// </summary>
private DsiDisplay()
{
// placeholder
}
/// <summary>
/// Gets a value indicating whether the Pi Foundation Display files are present.
/// </summary>
/// <value>
/// <c>true</c> if this instance is present; otherwise, <c>false</c>.
/// </value>
public bool IsPresent => File.Exists(BrightnessFilename);
/// <summary>
/// Gets or sets the brightness of the DSI display via filesystem.
/// </summary>
/// <value>
/// The brightness.
/// </value>
public byte Brightness
{
get
{
if (IsPresent == false) return 0;
return byte.TryParse(File.ReadAllText(BrightnessFilename).Trim(), out var brightness) ? brightness : (byte)0;
}
set
{
if (IsPresent == false) return;
File.WriteAllText(BrightnessFilename, value.ToString(CultureInfo.InvariantCulture));
}
}
/// <summary>
/// Gets or sets a value indicating whether the backlight of the DSI display on.
/// This operation is performed via the file system
/// </summary>
/// <value>
/// <c>true</c> if this instance is backlight on; otherwise, <c>false</c>.
/// </value>
public bool IsBacklightOn
{
get
{
if (IsPresent == false) return false;
if (int.TryParse(File.ReadAllText(BacklightFilename).Trim(), out var backlight))
return backlight == 0;
return false;
}
set
{
if (IsPresent == false) return;
File.WriteAllText(BacklightFilename, value ? "0" : "1");
}
}
}
private DsiDisplay() {
// placeholder
}
/// <summary>
/// Gets a value indicating whether the Pi Foundation Display files are present.
/// </summary>
/// <value>
/// <c>true</c> if this instance is present; otherwise, <c>false</c>.
/// </value>
public Boolean IsPresent => File.Exists(BrightnessFilename);
/// <summary>
/// Gets or sets the brightness of the DSI display via filesystem.
/// </summary>
/// <value>
/// The brightness.
/// </value>
public Byte Brightness {
get => this.IsPresent == false ? (Byte)0 : Byte.TryParse(File.ReadAllText(BrightnessFilename).Trim(), out Byte brightness) ? brightness : (Byte)0;
set {
if(this.IsPresent == false) {
return;
}
File.WriteAllText(BrightnessFilename, value.ToString(CultureInfo.InvariantCulture));
}
}
/// <summary>
/// Gets or sets a value indicating whether the backlight of the DSI display on.
/// This operation is performed via the file system
/// </summary>
/// <value>
/// <c>true</c> if this instance is backlight on; otherwise, <c>false</c>.
/// </value>
public Boolean IsBacklightOn {
get => this.IsPresent == false ? false : Int32.TryParse(File.ReadAllText(BacklightFilename).Trim(), out Int32 backlight) ? backlight == 0 : false;
set {
if(this.IsPresent == false) {
return;
}
File.WriteAllText(BacklightFilename, value ? "0" : "1");
}
}
}
}

View File

@ -1,40 +1,51 @@
namespace Unosquare.RaspberryIO.Computer
{
using System.Net;
using System;
using System.Net;
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// Represents a Network Adapter
/// </summary>
public class NetworkAdapterInfo {
/// <summary>
/// Represents a Network Adapter
/// Gets the name.
/// </summary>
public class NetworkAdapterInfo
{
/// <summary>
/// Gets the name.
/// </summary>
public string Name { get; internal set; }
/// <summary>
/// Gets the IP V4 address.
/// </summary>
public IPAddress IPv4 { get; internal set; }
/// <summary>
/// Gets the IP V6 address.
/// </summary>
public IPAddress IPv6 { get; internal set; }
/// <summary>
/// Gets the name of the access point.
/// </summary>
public string AccessPointName { get; internal set; }
/// <summary>
/// Gets the MAC (Physical) address.
/// </summary>
public string MacAddress { get; internal set; }
/// <summary>
/// Gets a value indicating whether this instance is wireless.
/// </summary>
public bool IsWireless { get; internal set; }
}
public String Name {
get; internal set;
}
/// <summary>
/// Gets the IP V4 address.
/// </summary>
public IPAddress IPv4 {
get; internal set;
}
/// <summary>
/// Gets the IP V6 address.
/// </summary>
public IPAddress IPv6 {
get; internal set;
}
/// <summary>
/// Gets the name of the access point.
/// </summary>
public String AccessPointName {
get; internal set;
}
/// <summary>
/// Gets the MAC (Physical) address.
/// </summary>
public String MacAddress {
get; internal set;
}
/// <summary>
/// Gets a value indicating whether this instance is wireless.
/// </summary>
public Boolean IsWireless {
get; internal set;
}
}
}

View File

@ -1,266 +1,252 @@
namespace Unosquare.RaspberryIO.Computer
{
using Swan;
using Swan.Abstractions;
using Swan.Components;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Text;
using Unosquare.Swan;
using Unosquare.Swan.Abstractions;
using Unosquare.Swan.Components;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Text;
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// Represents the network information
/// </summary>
public class NetworkSettings : SingletonBase<NetworkSettings> {
private const String EssidTag = "ESSID:";
/// <summary>
/// Represents the network information
/// Gets the local machine Host Name.
/// </summary>
public class NetworkSettings : SingletonBase<NetworkSettings>
{
private const string EssidTag = "ESSID:";
/// <summary>
/// Gets the local machine Host Name.
/// </summary>
public string HostName => Network.HostName;
/// <summary>
/// Retrieves the wireless networks.
/// </summary>
/// <param name="adapter">The adapter.</param>
/// <returns>A list of WiFi networks</returns>
public List<WirelessNetworkInfo> RetrieveWirelessNetworks(string adapter) => RetrieveWirelessNetworks(new[] { adapter });
/// <summary>
/// Retrieves the wireless networks.
/// </summary>
/// <param name="adapters">The adapters.</param>
/// <returns>A list of WiFi networks</returns>
public List<WirelessNetworkInfo> RetrieveWirelessNetworks(string[] adapters = null)
{
var result = new List<WirelessNetworkInfo>();
foreach (var networkAdapter in adapters ?? RetrieveAdapters().Where(x => x.IsWireless).Select(x => x.Name))
{
var wirelessOutput = ProcessRunner.GetProcessOutputAsync("iwlist", $"{networkAdapter} scanning").Result;
var outputLines =
wirelessOutput.Split('\n')
.Select(x => x.Trim())
.Where(x => string.IsNullOrWhiteSpace(x) == false)
.ToArray();
for (var i = 0; i < outputLines.Length; i++)
{
var line = outputLines[i];
if (line.StartsWith(EssidTag) == false) continue;
var network = new WirelessNetworkInfo()
{
Name = line.Replace(EssidTag, string.Empty).Replace("\"", string.Empty)
};
while (true)
{
if (i + 1 >= outputLines.Length) break;
// should look for two lines before the ESSID acording to the scan
line = outputLines[i - 2];
if (line.StartsWith("Quality="))
{
network.Quality = line.Replace("Quality=", string.Empty);
break;
}
}
while (true)
{
if (i + 1 >= outputLines.Length) break;
// should look for a line before the ESSID acording to the scan
line = outputLines[i - 1];
if (line.StartsWith("Encryption key:"))
{
network.IsEncrypted = line.Replace("Encryption key:", string.Empty).Trim() == "on";
break;
}
}
if (result.Any(x => x.Name == network.Name) == false)
result.Add(network);
}
}
return result.OrderBy(x => x.Name).ToList();
}
/// <summary>
/// Setups the wireless network.
/// </summary>
/// <param name="adapterName">Name of the adapter.</param>
/// <param name="networkSsid">The network ssid.</param>
/// <param name="password">The password.</param>
/// <param name="countryCode">The 2-letter country code in uppercase. Default is US.</param>
/// <returns>True if successful. Otherwise, false.</returns>
public bool SetupWirelessNetwork(string adapterName, string networkSsid, string password = null, string countryCode = "US")
{
// TODO: Get the country where the device is located to set 'country' param in payload var
var payload = $"country={countryCode}\nctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev\nupdate_config=1\n";
payload += string.IsNullOrEmpty(password)
? $"network={{\n\tssid=\"{networkSsid}\"\n\t}}\n"
: $"network={{\n\tssid=\"{networkSsid}\"\n\tpsk=\"{password}\"\n\t}}\n";
try
{
File.WriteAllText("/etc/wpa_supplicant/wpa_supplicant.conf", payload);
ProcessRunner.GetProcessOutputAsync("pkill", "-f wpa_supplicant").Wait();
ProcessRunner.GetProcessOutputAsync("ifdown", adapterName).Wait();
ProcessRunner.GetProcessOutputAsync("ifup", adapterName).Wait();
}
catch (Exception ex)
{
ex.Log(nameof(NetworkSettings));
return false;
}
return true;
}
/// <summary>
/// Retrieves the network adapters.
/// </summary>
/// <returns>A list of network adapters.</returns>
public List<NetworkAdapterInfo> RetrieveAdapters()
{
const string hWaddr = "HWaddr ";
const string ether = "ether ";
var result = new List<NetworkAdapterInfo>();
var interfacesOutput = ProcessRunner.GetProcessOutputAsync("ifconfig").Result;
var wlanOutput = ProcessRunner.GetProcessOutputAsync("iwconfig")
.Result.Split('\n')
.Where(x => x.Contains("no wireless extensions.") == false)
.ToArray();
var outputLines = interfacesOutput.Split('\n').Where(x => string.IsNullOrWhiteSpace(x) == false).ToArray();
for (var i = 0; i < outputLines.Length; i++)
{
// grab the current line
var line = outputLines[i];
// skip if the line is indented
if (char.IsLetterOrDigit(line[0]) == false)
continue;
// Read the line as an adatper
var adapter = new NetworkAdapterInfo
{
Name = line.Substring(0, line.IndexOf(' ')).TrimEnd(':')
};
// Parse the MAC address in old version of ifconfig; it comes in the first line
if (line.IndexOf(hWaddr) >= 0)
{
var startIndexHwd = line.IndexOf(hWaddr) + hWaddr.Length;
adapter.MacAddress = line.Substring(startIndexHwd, 17).Trim();
}
// Parse the info in lines other than the first
for (var j = i + 1; j < outputLines.Length; j++)
{
// Get the contents of the indented line
var indentedLine = outputLines[j];
// We have hit the next adapter info
if (char.IsLetterOrDigit(indentedLine[0]))
{
i = j - 1;
break;
}
// Parse the MAC address in new versions of ifconfig; it no longer comes in the first line
if (indentedLine.IndexOf(ether) >= 0 && string.IsNullOrWhiteSpace(adapter.MacAddress))
{
var startIndexHwd = indentedLine.IndexOf(ether) + ether.Length;
adapter.MacAddress = indentedLine.Substring(startIndexHwd, 17).Trim();
}
// Parse the IPv4 Address
{
var addressText = ParseOutputTagFromLine(indentedLine, "inet addr:") ?? ParseOutputTagFromLine(indentedLine, "inet ");
if (addressText != null)
{
if (IPAddress.TryParse(addressText, out var outValue))
adapter.IPv4 = outValue;
}
}
// Parse the IPv6 Address
{
var addressText = ParseOutputTagFromLine(indentedLine, "inet6 addr:") ?? ParseOutputTagFromLine(indentedLine, "inet6 ");
if (addressText != null)
{
if (IPAddress.TryParse(addressText, out var outValue))
adapter.IPv6 = outValue;
}
}
// we have hit the end of the output in an indented line
if (j >= outputLines.Length - 1)
i = outputLines.Length;
}
// Retrieve the wireless LAN info
var wlanInfo = wlanOutput.FirstOrDefault(x => x.StartsWith(adapter.Name));
if (wlanInfo != null)
{
adapter.IsWireless = true;
var essidParts = wlanInfo.Split(new[] { EssidTag }, StringSplitOptions.RemoveEmptyEntries);
if (essidParts.Length >= 2)
{
adapter.AccessPointName = essidParts[1].Replace("\"", string.Empty).Trim();
}
}
// Add the current adapter to the result
result.Add(adapter);
}
return result.OrderBy(x => x.Name).ToList();
}
/// <summary>
/// Retrieves current wireless connected network name.
/// </summary>
/// <returns>The connected network name.</returns>
public string GetWirelessNetworkName() => ProcessRunner.GetProcessOutputAsync("iwgetid", "-r").Result;
/// <summary>
/// Parses the output tag from the given line.
/// </summary>
/// <param name="indentedLine">The indented line.</param>
/// <param name="tagName">Name of the tag.</param>
/// <returns>The value after the tag identifier</returns>
private static string ParseOutputTagFromLine(string indentedLine, string tagName)
{
if (indentedLine.IndexOf(tagName) < 0)
return null;
var startIndex = indentedLine.IndexOf(tagName) + tagName.Length;
var builder = new StringBuilder(1024);
for (var c = startIndex; c < indentedLine.Length; c++)
{
var currentChar = indentedLine[c];
if (!char.IsPunctuation(currentChar) && !char.IsLetterOrDigit(currentChar))
break;
builder.Append(currentChar);
}
return builder.ToString();
}
}
public String HostName => Network.HostName;
/// <summary>
/// Retrieves the wireless networks.
/// </summary>
/// <param name="adapter">The adapter.</param>
/// <returns>A list of WiFi networks</returns>
public List<WirelessNetworkInfo> RetrieveWirelessNetworks(String adapter) => this.RetrieveWirelessNetworks(new[] { adapter });
/// <summary>
/// Retrieves the wireless networks.
/// </summary>
/// <param name="adapters">The adapters.</param>
/// <returns>A list of WiFi networks</returns>
public List<WirelessNetworkInfo> RetrieveWirelessNetworks(String[] adapters = null) {
List<WirelessNetworkInfo> result = new List<WirelessNetworkInfo>();
foreach(String networkAdapter in adapters ?? this.RetrieveAdapters().Where(x => x.IsWireless).Select(x => x.Name)) {
String wirelessOutput = ProcessRunner.GetProcessOutputAsync("iwlist", $"{networkAdapter} scanning").Result;
String[] outputLines =
wirelessOutput.Split('\n')
.Select(x => x.Trim())
.Where(x => String.IsNullOrWhiteSpace(x) == false)
.ToArray();
for(Int32 i = 0; i < outputLines.Length; i++) {
String line = outputLines[i];
if(line.StartsWith(EssidTag) == false) {
continue;
}
WirelessNetworkInfo network = new WirelessNetworkInfo() {
Name = line.Replace(EssidTag, String.Empty).Replace("\"", String.Empty)
};
while(true) {
if(i + 1 >= outputLines.Length) {
break;
}
// should look for two lines before the ESSID acording to the scan
line = outputLines[i - 2];
if(line.StartsWith("Quality=")) {
network.Quality = line.Replace("Quality=", String.Empty);
break;
}
}
while(true) {
if(i + 1 >= outputLines.Length) {
break;
}
// should look for a line before the ESSID acording to the scan
line = outputLines[i - 1];
if(line.StartsWith("Encryption key:")) {
network.IsEncrypted = line.Replace("Encryption key:", String.Empty).Trim() == "on";
break;
}
}
if(result.Any(x => x.Name == network.Name) == false) {
result.Add(network);
}
}
}
return result.OrderBy(x => x.Name).ToList();
}
/// <summary>
/// Setups the wireless network.
/// </summary>
/// <param name="adapterName">Name of the adapter.</param>
/// <param name="networkSsid">The network ssid.</param>
/// <param name="password">The password.</param>
/// <param name="countryCode">The 2-letter country code in uppercase. Default is US.</param>
/// <returns>True if successful. Otherwise, false.</returns>
public Boolean SetupWirelessNetwork(String adapterName, String networkSsid, String password = null, String countryCode = "US") {
// TODO: Get the country where the device is located to set 'country' param in payload var
String payload = $"country={countryCode}\nctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev\nupdate_config=1\n";
payload += String.IsNullOrEmpty(password)
? $"network={{\n\tssid=\"{networkSsid}\"\n\t}}\n"
: $"network={{\n\tssid=\"{networkSsid}\"\n\tpsk=\"{password}\"\n\t}}\n";
try {
File.WriteAllText("/etc/wpa_supplicant/wpa_supplicant.conf", payload);
ProcessRunner.GetProcessOutputAsync("pkill", "-f wpa_supplicant").Wait();
ProcessRunner.GetProcessOutputAsync("ifdown", adapterName).Wait();
ProcessRunner.GetProcessOutputAsync("ifup", adapterName).Wait();
} catch(Exception ex) {
ex.Log(nameof(NetworkSettings));
return false;
}
return true;
}
/// <summary>
/// Retrieves the network adapters.
/// </summary>
/// <returns>A list of network adapters.</returns>
public List<NetworkAdapterInfo> RetrieveAdapters() {
const String hWaddr = "HWaddr ";
const String ether = "ether ";
List<NetworkAdapterInfo> result = new List<NetworkAdapterInfo>();
String interfacesOutput = ProcessRunner.GetProcessOutputAsync("ifconfig").Result;
String[] wlanOutput = ProcessRunner.GetProcessOutputAsync("iwconfig")
.Result.Split('\n')
.Where(x => x.Contains("no wireless extensions.") == false)
.ToArray();
String[] outputLines = interfacesOutput.Split('\n').Where(x => String.IsNullOrWhiteSpace(x) == false).ToArray();
for(Int32 i = 0; i < outputLines.Length; i++) {
// grab the current line
String line = outputLines[i];
// skip if the line is indented
if(Char.IsLetterOrDigit(line[0]) == false) {
continue;
}
// Read the line as an adatper
NetworkAdapterInfo adapter = new NetworkAdapterInfo {
Name = line.Substring(0, line.IndexOf(' ')).TrimEnd(':')
};
// Parse the MAC address in old version of ifconfig; it comes in the first line
if(line.IndexOf(hWaddr) >= 0) {
Int32 startIndexHwd = line.IndexOf(hWaddr) + hWaddr.Length;
adapter.MacAddress = line.Substring(startIndexHwd, 17).Trim();
}
// Parse the info in lines other than the first
for(Int32 j = i + 1; j < outputLines.Length; j++) {
// Get the contents of the indented line
String indentedLine = outputLines[j];
// We have hit the next adapter info
if(Char.IsLetterOrDigit(indentedLine[0])) {
i = j - 1;
break;
}
// Parse the MAC address in new versions of ifconfig; it no longer comes in the first line
if(indentedLine.IndexOf(ether) >= 0 && String.IsNullOrWhiteSpace(adapter.MacAddress)) {
Int32 startIndexHwd = indentedLine.IndexOf(ether) + ether.Length;
adapter.MacAddress = indentedLine.Substring(startIndexHwd, 17).Trim();
}
// Parse the IPv4 Address
{
String addressText = ParseOutputTagFromLine(indentedLine, "inet addr:") ?? ParseOutputTagFromLine(indentedLine, "inet ");
if(addressText != null) {
if(IPAddress.TryParse(addressText, out IPAddress outValue)) {
adapter.IPv4 = outValue;
}
}
}
// Parse the IPv6 Address
{
String addressText = ParseOutputTagFromLine(indentedLine, "inet6 addr:") ?? ParseOutputTagFromLine(indentedLine, "inet6 ");
if(addressText != null) {
if(IPAddress.TryParse(addressText, out IPAddress outValue)) {
adapter.IPv6 = outValue;
}
}
}
// we have hit the end of the output in an indented line
if(j >= outputLines.Length - 1) {
i = outputLines.Length;
}
}
// Retrieve the wireless LAN info
String wlanInfo = wlanOutput.FirstOrDefault(x => x.StartsWith(adapter.Name));
if(wlanInfo != null) {
adapter.IsWireless = true;
String[] essidParts = wlanInfo.Split(new[] { EssidTag }, StringSplitOptions.RemoveEmptyEntries);
if(essidParts.Length >= 2) {
adapter.AccessPointName = essidParts[1].Replace("\"", String.Empty).Trim();
}
}
// Add the current adapter to the result
result.Add(adapter);
}
return result.OrderBy(x => x.Name).ToList();
}
/// <summary>
/// Retrieves current wireless connected network name.
/// </summary>
/// <returns>The connected network name.</returns>
public String GetWirelessNetworkName() => ProcessRunner.GetProcessOutputAsync("iwgetid", "-r").Result;
/// <summary>
/// Parses the output tag from the given line.
/// </summary>
/// <param name="indentedLine">The indented line.</param>
/// <param name="tagName">Name of the tag.</param>
/// <returns>The value after the tag identifier</returns>
private static String ParseOutputTagFromLine(String indentedLine, String tagName) {
if(indentedLine.IndexOf(tagName) < 0) {
return null;
}
Int32 startIndex = indentedLine.IndexOf(tagName) + tagName.Length;
StringBuilder builder = new StringBuilder(1024);
for(Int32 c = startIndex; c < indentedLine.Length; c++) {
Char currentChar = indentedLine[c];
if(!Char.IsPunctuation(currentChar) && !Char.IsLetterOrDigit(currentChar)) {
break;
}
_ = builder.Append(currentChar);
}
return builder.ToString();
}
}
}

View File

@ -1,46 +1,58 @@
namespace Unosquare.RaspberryIO.Computer
{
using System;
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// Represents the OS Information
/// </summary>
public class OsInfo {
/// <summary>
/// Represents the OS Information
/// System name
/// </summary>
public class OsInfo
{
/// <summary>
/// System name
/// </summary>
public string SysName { get; set; }
/// <summary>
/// Node name
/// </summary>
public string NodeName { get; set; }
/// <summary>
/// Release level
/// </summary>
public string Release { get; set; }
/// <summary>
/// Version level
/// </summary>
public string Version { get; set; }
/// <summary>
/// Hardware level
/// </summary>
public string Machine { get; set; }
/// <summary>
/// Domain name
/// </summary>
public string DomainName { get; set; }
/// <summary>
/// Returns a <see cref="string" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="string" /> that represents this instance.
/// </returns>
public override string ToString() => $"{SysName} {Release} {Version}";
}
public String SysName {
get; set;
}
/// <summary>
/// Node name
/// </summary>
public String NodeName {
get; set;
}
/// <summary>
/// Release level
/// </summary>
public String Release {
get; set;
}
/// <summary>
/// Version level
/// </summary>
public String Version {
get; set;
}
/// <summary>
/// Hardware level
/// </summary>
public String Machine {
get; set;
}
/// <summary>
/// Domain name
/// </summary>
public String DomainName {
get; set;
}
/// <summary>
/// Returns a <see cref="String" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="String" /> that represents this instance.
/// </returns>
public override String ToString() => $"{this.SysName} {this.Release} {this.Version}";
}
}

View File

@ -1,134 +1,132 @@
namespace Unosquare.RaspberryIO.Computer
{
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// Defines the board revision codes of the different versions of the Raspberry Pi
/// http://www.raspberrypi-spy.co.uk/2012/09/checking-your-raspberry-pi-board-version/
/// </summary>
public enum PiVersion {
/// <summary>
/// Defines the board revision codes of the different versions of the Raspberry Pi
/// http://www.raspberrypi-spy.co.uk/2012/09/checking-your-raspberry-pi-board-version/
/// The unknown version
/// </summary>
public enum PiVersion
{
/// <summary>
/// The unknown version
/// </summary>
Unknown = 0,
/// <summary>
/// The model b rev1
/// </summary>
ModelBRev1 = 0x0002,
/// <summary>
/// The model b rev1 ec N0001
/// </summary>
ModelBRev1ECN0001 = 0x0003,
/// <summary>
/// The model b rev2x04
/// </summary>
ModelBRev2x04 = 0x0004,
/// <summary>
/// The model b rev2x05
/// </summary>
ModelBRev2x05 = 0x0005,
/// <summary>
/// The model b rev2x06
/// </summary>
ModelBRev2x06 = 0x0006,
/// <summary>
/// The model ax07
/// </summary>
ModelAx07 = 0x0007,
/// <summary>
/// The model ax08
/// </summary>
ModelAx08 = 0x0008,
/// <summary>
/// The model ax09
/// </summary>
ModelAx09 = 0x0009,
/// <summary>
/// The model b rev2x0d
/// </summary>
ModelBRev2x0d,
/// <summary>
/// The model b rev2x0e
/// </summary>
ModelBRev2x0e,
/// <summary>
/// The model b rev2x0f
/// </summary>
ModelBRev2x0f = 0x000f,
/// <summary>
/// The model b plus0x10
/// </summary>
ModelBPlus0x10 = 0x0010,
/// <summary>
/// The model b plus0x13
/// </summary>
ModelBPlus0x13 = 0x0013,
/// <summary>
/// The compute module0x11
/// </summary>
ComputeModule0x11 = 0x0011,
/// <summary>
/// The compute module0x14
/// </summary>
ComputeModule0x14 = 0x0014,
/// <summary>
/// The model a plus0x12
/// </summary>
ModelAPlus0x12 = 0x0012,
/// <summary>
/// The model a plus0x15
/// </summary>
ModelAPlus0x15 = 0x0015,
/// <summary>
/// The pi2 model B1V1 sony
/// </summary>
Pi2ModelB1v1Sony = 0xa01041,
/// <summary>
/// The pi2 model B1V1 embest
/// </summary>
Pi2ModelB1v1Embest = 0xa21041,
/// <summary>
/// The pi2 model B1V2
/// </summary>
Pi2ModelB1v2 = 0xa22042,
/// <summary>
/// The pi zero1v2
/// </summary>
PiZero1v2 = 0x900092,
/// <summary>
/// The pi zero1v3
/// </summary>
PiZero1v3 = 0x900093,
/// <summary>
/// The pi3 model b sony
/// </summary>
Pi3ModelBSony = 0xa02082,
/// <summary>
/// The pi3 model b embest
/// </summary>
Pi3ModelBEmbest = 0xa22082
}
Unknown = 0,
/// <summary>
/// The model b rev1
/// </summary>
ModelBRev1 = 0x0002,
/// <summary>
/// The model b rev1 ec N0001
/// </summary>
ModelBRev1ECN0001 = 0x0003,
/// <summary>
/// The model b rev2x04
/// </summary>
ModelBRev2x04 = 0x0004,
/// <summary>
/// The model b rev2x05
/// </summary>
ModelBRev2x05 = 0x0005,
/// <summary>
/// The model b rev2x06
/// </summary>
ModelBRev2x06 = 0x0006,
/// <summary>
/// The model ax07
/// </summary>
ModelAx07 = 0x0007,
/// <summary>
/// The model ax08
/// </summary>
ModelAx08 = 0x0008,
/// <summary>
/// The model ax09
/// </summary>
ModelAx09 = 0x0009,
/// <summary>
/// The model b rev2x0d
/// </summary>
ModelBRev2x0d,
/// <summary>
/// The model b rev2x0e
/// </summary>
ModelBRev2x0e,
/// <summary>
/// The model b rev2x0f
/// </summary>
ModelBRev2x0f = 0x000f,
/// <summary>
/// The model b plus0x10
/// </summary>
ModelBPlus0x10 = 0x0010,
/// <summary>
/// The model b plus0x13
/// </summary>
ModelBPlus0x13 = 0x0013,
/// <summary>
/// The compute module0x11
/// </summary>
ComputeModule0x11 = 0x0011,
/// <summary>
/// The compute module0x14
/// </summary>
ComputeModule0x14 = 0x0014,
/// <summary>
/// The model a plus0x12
/// </summary>
ModelAPlus0x12 = 0x0012,
/// <summary>
/// The model a plus0x15
/// </summary>
ModelAPlus0x15 = 0x0015,
/// <summary>
/// The pi2 model B1V1 sony
/// </summary>
Pi2ModelB1v1Sony = 0xa01041,
/// <summary>
/// The pi2 model B1V1 embest
/// </summary>
Pi2ModelB1v1Embest = 0xa21041,
/// <summary>
/// The pi2 model B1V2
/// </summary>
Pi2ModelB1v2 = 0xa22042,
/// <summary>
/// The pi zero1v2
/// </summary>
PiZero1v2 = 0x900092,
/// <summary>
/// The pi zero1v3
/// </summary>
PiZero1v3 = 0x900093,
/// <summary>
/// The pi3 model b sony
/// </summary>
Pi3ModelBSony = 0xa02082,
/// <summary>
/// The pi3 model b embest
/// </summary>
Pi3ModelBEmbest = 0xa22082
}
}

View File

@ -1,344 +1,343 @@
namespace Unosquare.RaspberryIO.Computer
{
using Native;
using Swan.Abstractions;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
using Unosquare.RaspberryIO.Native;
using Unosquare.Swan.Abstractions;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using System.Linq;
using System.Reflection;
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// http://raspberry-pi-guide.readthedocs.io/en/latest/system.html
/// </summary>
public sealed class SystemInfo : SingletonBase<SystemInfo> {
private const String CpuInfoFilePath = "/proc/cpuinfo";
private const String MemInfoFilePath = "/proc/meminfo";
private const String UptimeFilePath = "/proc/uptime";
private static readonly StringComparer StringComparer = StringComparer.InvariantCultureIgnoreCase;
[System.Diagnostics.CodeAnalysis.SuppressMessage("Codequalität", "IDE0052:Ungelesene private Member entfernen", Justification = "<Ausstehend>")]
private static readonly Object SyncRoot = new Object();
/// <summary>
/// http://raspberry-pi-guide.readthedocs.io/en/latest/system.html
/// Prevents a default instance of the <see cref="SystemInfo"/> class from being created.
/// </summary>
public sealed class SystemInfo : SingletonBase<SystemInfo>
{
private const string CpuInfoFilePath = "/proc/cpuinfo";
private const string MemInfoFilePath = "/proc/meminfo";
private const string UptimeFilePath = "/proc/uptime";
private static readonly StringComparer StringComparer = StringComparer.InvariantCultureIgnoreCase;
private static readonly object SyncRoot = new object();
/// <summary>
/// Prevents a default instance of the <see cref="SystemInfo"/> class from being created.
/// </summary>
/// <exception cref="NotSupportedException">Could not initialize the GPIO controller</exception>
private SystemInfo()
{
#region Obtain and format a property dictionary
var properties =
typeof(SystemInfo).GetTypeInfo()
.GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic)
.Where(
p =>
p.CanWrite && p.CanRead &&
(p.PropertyType == typeof(string) || p.PropertyType == typeof(string[])))
.ToArray();
var propDictionary = new Dictionary<string, PropertyInfo>(StringComparer);
foreach (var prop in properties)
{
propDictionary[prop.Name.Replace(" ", string.Empty).ToLowerInvariant().Trim()] = prop;
}
#endregion
#region Extract CPU information
if (File.Exists(CpuInfoFilePath))
{
var cpuInfoLines = File.ReadAllLines(CpuInfoFilePath);
foreach (var line in cpuInfoLines)
{
var lineParts = line.Split(new[] { ':' }, 2);
if (lineParts.Length != 2)
continue;
var propertyKey = lineParts[0].Trim().Replace(" ", string.Empty);
var propertyStringValue = lineParts[1].Trim();
if (!propDictionary.ContainsKey(propertyKey)) continue;
var property = propDictionary[propertyKey];
if (property.PropertyType == typeof(string))
{
property.SetValue(this, propertyStringValue);
}
else if (property.PropertyType == typeof(string[]))
{
var propertyArrayAvalue = propertyStringValue.Split(' ');
property.SetValue(this, propertyArrayAvalue);
}
}
}
#endregion
#region Extract Memory Information
if (File.Exists(MemInfoFilePath))
{
var memInfoLines = File.ReadAllLines(MemInfoFilePath);
foreach (var line in memInfoLines)
{
var lineParts = line.Split(new[] { ':' }, 2);
if (lineParts.Length != 2)
continue;
if (lineParts[0].ToLowerInvariant().Trim().Equals("memtotal") == false)
continue;
var memKb = lineParts[1].ToLowerInvariant().Trim().Replace("kb", string.Empty).Trim();
if (int.TryParse(memKb, out var parsedMem))
{
InstalledRam = parsedMem * 1024;
break;
}
}
}
#endregion
#region Board Version and Form Factor
try
{
if (string.IsNullOrWhiteSpace(Revision) == false &&
int.TryParse(
Revision.ToUpperInvariant(),
NumberStyles.HexNumber,
CultureInfo.InvariantCulture,
out var boardVersion))
{
RaspberryPiVersion = PiVersion.Unknown;
if (Enum.GetValues(typeof(PiVersion)).Cast<int>().Contains(boardVersion))
{
RaspberryPiVersion = (PiVersion)boardVersion;
}
}
WiringPiBoardRevision = WiringPi.PiBoardRev();
}
catch
{
/* Ignore */
}
#endregion
#region Version Information
{
var libParts = WiringPi.WiringPiLibrary.Split('.');
var major = int.Parse(libParts[libParts.Length - 2]);
var minor = int.Parse(libParts[libParts.Length - 1]);
var version = new Version(major, minor);
WiringPiVersion = version;
}
#endregion
#region Extract OS Info
try
{
Standard.Uname(out var unameInfo);
OperatingSystem = new OsInfo
{
DomainName = unameInfo.DomainName,
Machine = unameInfo.Machine,
NodeName = unameInfo.NodeName,
Release = unameInfo.Release,
SysName = unameInfo.SysName,
Version = unameInfo.Version
};
}
catch
{
OperatingSystem = new OsInfo();
}
#endregion
}
/// <summary>
/// Gets the wiring pi library version.
/// </summary>
public Version WiringPiVersion { get; }
/// <summary>
/// Gets the OS information.
/// </summary>
/// <value>
/// The os information.
/// </value>
public OsInfo OperatingSystem { get; }
/// <summary>
/// Gets the Raspberry Pi version.
/// </summary>
public PiVersion RaspberryPiVersion { get; }
/// <summary>
/// Gets the Wiring Pi board revision (1 or 2).
/// </summary>
/// <value>
/// The wiring pi board revision.
/// </value>
public int WiringPiBoardRevision { get; }
/// <summary>
/// Gets the number of processor cores.
/// </summary>
public int ProcessorCount
{
get
{
if (int.TryParse(Processor, out var outIndex))
{
return outIndex + 1;
}
return 0;
}
}
/// <summary>
/// Gets the installed ram in bytes.
/// </summary>
public int InstalledRam { get; }
/// <summary>
/// Gets a value indicating whether this CPU is little endian.
/// </summary>
public bool IsLittleEndian => BitConverter.IsLittleEndian;
/// <summary>
/// Gets the CPU model name.
/// </summary>
public string ModelName { get; private set; }
/// <summary>
/// Gets a list of supported CPU features.
/// </summary>
public string[] Features { get; private set; }
/// <summary>
/// Gets the CPU implementer hex code.
/// </summary>
public string CpuImplementer { get; private set; }
/// <summary>
/// Gets the CPU architecture code.
/// </summary>
public string CpuArchitecture { get; private set; }
/// <summary>
/// Gets the CPU variant code.
/// </summary>
public string CpuVariant { get; private set; }
/// <summary>
/// Gets the CPU part code.
/// </summary>
public string CpuPart { get; private set; }
/// <summary>
/// Gets the CPU revision code.
/// </summary>
public string CpuRevision { get; private set; }
/// <summary>
/// Gets the hardware model number.
/// </summary>
public string Hardware { get; private set; }
/// <summary>
/// Gets the hardware revision number.
/// </summary>
public string Revision { get; private set; }
/// <summary>
/// Gets the serial number.
/// </summary>
public string Serial { get; private set; }
/// <summary>
/// Gets the system uptime (in seconds).
/// </summary>
public double Uptime
{
get
{
try
{
if (File.Exists(UptimeFilePath) == false) return 0;
var parts = File.ReadAllText(UptimeFilePath).Trim().Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
if (parts.Length >= 1 && float.TryParse(parts[0], out var result))
return result;
}
catch
{
/* Ignore */
}
return 0;
}
}
/// <summary>
/// Gets the uptime in TimeSpan.
/// </summary>
public TimeSpan UptimeTimeSpan => TimeSpan.FromSeconds(Uptime);
/// <summary>
/// Placeholder for processor index
/// </summary>
private string Processor { get; set; }
/// <summary>
/// Returns a <see cref="string" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="string" /> that represents this instance.
/// </returns>
public override string ToString()
{
var properties = typeof(SystemInfo).GetTypeInfo().GetProperties(BindingFlags.Instance | BindingFlags.Public)
.Where(p => p.CanRead && (
p.PropertyType == typeof(string) ||
p.PropertyType == typeof(string[]) ||
p.PropertyType == typeof(int) ||
p.PropertyType == typeof(bool) ||
p.PropertyType == typeof(TimeSpan)))
.ToArray();
var properyValues = new List<string>
{
/// <exception cref="NotSupportedException">Could not initialize the GPIO controller</exception>
private SystemInfo() {
#region Obtain and format a property dictionary
PropertyInfo[] properties =
typeof(SystemInfo).GetTypeInfo()
.GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic)
.Where(
p =>
p.CanWrite && p.CanRead &&
(p.PropertyType == typeof(String) || p.PropertyType == typeof(String[])))
.ToArray();
Dictionary<String, PropertyInfo> propDictionary = new Dictionary<String, PropertyInfo>(StringComparer);
foreach(PropertyInfo prop in properties) {
propDictionary[prop.Name.Replace(" ", String.Empty).ToLowerInvariant().Trim()] = prop;
}
#endregion
#region Extract CPU information
if(File.Exists(CpuInfoFilePath)) {
String[] cpuInfoLines = File.ReadAllLines(CpuInfoFilePath);
foreach(String line in cpuInfoLines) {
String[] lineParts = line.Split(new[] { ':' }, 2);
if(lineParts.Length != 2) {
continue;
}
String propertyKey = lineParts[0].Trim().Replace(" ", String.Empty);
String propertyStringValue = lineParts[1].Trim();
if(!propDictionary.ContainsKey(propertyKey)) {
continue;
}
PropertyInfo property = propDictionary[propertyKey];
if(property.PropertyType == typeof(String)) {
property.SetValue(this, propertyStringValue);
} else if(property.PropertyType == typeof(String[])) {
String[] propertyArrayAvalue = propertyStringValue.Split(' ');
property.SetValue(this, propertyArrayAvalue);
}
}
}
#endregion
#region Extract Memory Information
if(File.Exists(MemInfoFilePath)) {
String[] memInfoLines = File.ReadAllLines(MemInfoFilePath);
foreach(String line in memInfoLines) {
String[] lineParts = line.Split(new[] { ':' }, 2);
if(lineParts.Length != 2) {
continue;
}
if(lineParts[0].ToLowerInvariant().Trim().Equals("memtotal") == false) {
continue;
}
String memKb = lineParts[1].ToLowerInvariant().Trim().Replace("kb", String.Empty).Trim();
if(Int32.TryParse(memKb, out Int32 parsedMem)) {
this.InstalledRam = parsedMem * 1024;
break;
}
}
}
#endregion
#region Board Version and Form Factor
try {
if(String.IsNullOrWhiteSpace(this.Revision) == false &&
Int32.TryParse(
this.Revision.ToUpperInvariant(),
NumberStyles.HexNumber,
CultureInfo.InvariantCulture,
out Int32 boardVersion)) {
this.RaspberryPiVersion = PiVersion.Unknown;
if(Enum.GetValues(typeof(PiVersion)).Cast<Int32>().Contains(boardVersion)) {
this.RaspberryPiVersion = (PiVersion)boardVersion;
}
}
this.WiringPiBoardRevision = WiringPi.PiBoardRev();
} catch {
/* Ignore */
}
#endregion
#region Version Information
{
String[] libParts = WiringPi.WiringPiLibrary.Split('.');
Int32 major = Int32.Parse(libParts[libParts.Length - 2]);
Int32 minor = Int32.Parse(libParts[libParts.Length - 1]);
Version version = new Version(major, minor);
this.WiringPiVersion = version;
}
#endregion
#region Extract OS Info
try {
_ = Standard.Uname(out SystemName unameInfo);
this.OperatingSystem = new OsInfo {
DomainName = unameInfo.DomainName,
Machine = unameInfo.Machine,
NodeName = unameInfo.NodeName,
Release = unameInfo.Release,
SysName = unameInfo.SysName,
Version = unameInfo.Version
};
} catch {
this.OperatingSystem = new OsInfo();
}
#endregion
}
/// <summary>
/// Gets the wiring pi library version.
/// </summary>
public Version WiringPiVersion {
get;
}
/// <summary>
/// Gets the OS information.
/// </summary>
/// <value>
/// The os information.
/// </value>
public OsInfo OperatingSystem {
get;
}
/// <summary>
/// Gets the Raspberry Pi version.
/// </summary>
public PiVersion RaspberryPiVersion {
get;
}
/// <summary>
/// Gets the Wiring Pi board revision (1 or 2).
/// </summary>
/// <value>
/// The wiring pi board revision.
/// </value>
public Int32 WiringPiBoardRevision {
get;
}
/// <summary>
/// Gets the number of processor cores.
/// </summary>
public Int32 ProcessorCount => Int32.TryParse(this.Processor, out Int32 outIndex) ? outIndex + 1 : 0;
/// <summary>
/// Gets the installed ram in bytes.
/// </summary>
public Int32 InstalledRam {
get;
}
/// <summary>
/// Gets a value indicating whether this CPU is little endian.
/// </summary>
public Boolean IsLittleEndian => BitConverter.IsLittleEndian;
/// <summary>
/// Gets the CPU model name.
/// </summary>
public String ModelName {
get; private set;
}
/// <summary>
/// Gets a list of supported CPU features.
/// </summary>
public String[] Features {
get; private set;
}
/// <summary>
/// Gets the CPU implementer hex code.
/// </summary>
public String CpuImplementer {
get; private set;
}
/// <summary>
/// Gets the CPU architecture code.
/// </summary>
public String CpuArchitecture {
get; private set;
}
/// <summary>
/// Gets the CPU variant code.
/// </summary>
public String CpuVariant {
get; private set;
}
/// <summary>
/// Gets the CPU part code.
/// </summary>
public String CpuPart {
get; private set;
}
/// <summary>
/// Gets the CPU revision code.
/// </summary>
public String CpuRevision {
get; private set;
}
/// <summary>
/// Gets the hardware model number.
/// </summary>
public String Hardware {
get; private set;
}
/// <summary>
/// Gets the hardware revision number.
/// </summary>
public String Revision {
get; private set;
}
/// <summary>
/// Gets the serial number.
/// </summary>
public String Serial {
get; private set;
}
/// <summary>
/// Gets the system uptime (in seconds).
/// </summary>
public Double Uptime {
get {
try {
if(File.Exists(UptimeFilePath) == false) {
return 0;
}
String[] parts = File.ReadAllText(UptimeFilePath).Trim().Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
if(parts.Length >= 1 && Single.TryParse(parts[0], out Single result)) {
return result;
}
} catch {
/* Ignore */
}
return 0;
}
}
/// <summary>
/// Gets the uptime in TimeSpan.
/// </summary>
public TimeSpan UptimeTimeSpan => TimeSpan.FromSeconds(this.Uptime);
/// <summary>
/// Placeholder for processor index
/// </summary>
private String Processor {
get; set;
}
/// <summary>
/// Returns a <see cref="String" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="String" /> that represents this instance.
/// </returns>
public override String ToString() {
PropertyInfo[] properties = typeof(SystemInfo).GetTypeInfo().GetProperties(BindingFlags.Instance | BindingFlags.Public)
.Where(p => p.CanRead && (
p.PropertyType == typeof(String) ||
p.PropertyType == typeof(String[]) ||
p.PropertyType == typeof(Int32) ||
p.PropertyType == typeof(Boolean) ||
p.PropertyType == typeof(TimeSpan)))
.ToArray();
List<String> properyValues = new List<String>
{
"System Information",
$"\t{nameof(WiringPiVersion),-22}: {WiringPiVersion}",
$"\t{nameof(RaspberryPiVersion),-22}: {RaspberryPiVersion}"
};
foreach (var property in properties)
{
if (property.PropertyType != typeof(string[]))
{
properyValues.Add($"\t{property.Name,-22}: {property.GetValue(this)}");
}
else if (property.GetValue(this) is string[] allValues)
{
var concatValues = string.Join(" ", allValues);
properyValues.Add($"\t{property.Name,-22}: {concatValues}");
}
}
return string.Join(Environment.NewLine, properyValues.ToArray());
}
}
$"\t{nameof(this.WiringPiVersion),-22}: {this.WiringPiVersion}",
$"\t{nameof(this.RaspberryPiVersion),-22}: {this.RaspberryPiVersion}"
};
foreach(PropertyInfo property in properties) {
if(property.PropertyType != typeof(String[])) {
properyValues.Add($"\t{property.Name,-22}: {property.GetValue(this)}");
} else if(property.GetValue(this) is String[] allValues) {
String concatValues = String.Join(" ", allValues);
properyValues.Add($"\t{property.Name,-22}: {concatValues}");
}
}
return String.Join(Environment.NewLine, properyValues.ToArray());
}
}
}

View File

@ -1,23 +1,29 @@
namespace Unosquare.RaspberryIO.Computer
{
using System;
namespace Unosquare.RaspberryIO.Computer {
/// <summary>
/// Represents a wireless network information
/// </summary>
public class WirelessNetworkInfo {
/// <summary>
/// Represents a wireless network information
/// Gets the ESSID of the Wireless network.
/// </summary>
public class WirelessNetworkInfo
{
/// <summary>
/// Gets the ESSID of the Wireless network.
/// </summary>
public string Name { get; internal set; }
/// <summary>
/// Gets the network quality.
/// </summary>
public string Quality { get; internal set; }
/// <summary>
/// Gets a value indicating whether this instance is encrypted.
/// </summary>
public bool IsEncrypted { get; internal set; }
}
public String Name {
get; internal set;
}
/// <summary>
/// Gets the network quality.
/// </summary>
public String Quality {
get; internal set;
}
/// <summary>
/// Gets a value indicating whether this instance is encrypted.
/// </summary>
public Boolean IsEncrypted {
get; internal set;
}
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,201 +1,167 @@
namespace Unosquare.RaspberryIO.Gpio
{
using System;
public partial class GpioPin
{
#region Static Pin Definitions
internal static readonly Lazy<GpioPin> Pin08 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin08, 3)
{
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSDA },
Name = "BCM 2 (SDA)"
});
internal static readonly Lazy<GpioPin> Pin09 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin09, 5)
{
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSCL },
Name = "BCM 3 (SCL)"
});
internal static readonly Lazy<GpioPin> Pin07 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin07, 7)
{
Capabilities = new[] { PinCapability.GP, PinCapability.GPCLK },
Name = "BCM 4 (GPCLK0)"
});
internal static readonly Lazy<GpioPin> Pin00 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin00, 11)
{
Capabilities = new[] { PinCapability.GP, PinCapability.UARTRTS },
Name = "BCM 17"
});
internal static readonly Lazy<GpioPin> Pin02 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin02, 13)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 27"
});
internal static readonly Lazy<GpioPin> Pin03 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin03, 15)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 22"
});
internal static readonly Lazy<GpioPin> Pin12 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin12, 19)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMOSI },
Name = "BCM 10 (MOSI)"
});
internal static readonly Lazy<GpioPin> Pin13 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin13, 21)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMISO },
Name = "BCM 9 (MISO)"
});
internal static readonly Lazy<GpioPin> Pin14 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin14, 23)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPICLK },
Name = "BCM 11 (SCLCK)"
});
internal static readonly Lazy<GpioPin> Pin30 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin30, 27)
{
Capabilities = new[] { PinCapability.I2CSDA },
Name = "BCM 0 (ID_SD)"
});
internal static readonly Lazy<GpioPin> Pin31 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin31, 28)
{
Capabilities = new[] { PinCapability.I2CSCL },
Name = "BCM 1 (ID_SC)"
});
internal static readonly Lazy<GpioPin> Pin11 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin11, 26)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPICS },
Name = "BCM 7 (CE1)"
});
internal static readonly Lazy<GpioPin> Pin10 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin10, 24)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPICS },
Name = "BCM 8 (CE0)"
});
internal static readonly Lazy<GpioPin> Pin06 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin06, 22)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 25"
});
internal static readonly Lazy<GpioPin> Pin05 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin05, 18)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 24"
});
internal static readonly Lazy<GpioPin> Pin04 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin04, 16)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 23"
});
internal static readonly Lazy<GpioPin> Pin01 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin01, 12)
{
Capabilities = new[] { PinCapability.GP, PinCapability.PWM },
Name = "BCM 18 (PWM0)"
});
internal static readonly Lazy<GpioPin> Pin16 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin16, 10)
{
Capabilities = new[] { PinCapability.UARTRXD },
Name = "BCM 15 (RXD)"
});
internal static readonly Lazy<GpioPin> Pin15 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin15, 8)
{
Capabilities = new[] { PinCapability.UARTTXD },
Name = "BCM 14 (TXD)"
});
internal static readonly Lazy<GpioPin> Pin21 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin21, 29)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 5"
});
internal static readonly Lazy<GpioPin> Pin22 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin22, 31)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 6"
});
internal static readonly Lazy<GpioPin> Pin23 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin23, 33)
{
Capabilities = new[] { PinCapability.GP, PinCapability.PWM },
Name = "BCM 13 (PWM1)"
});
internal static readonly Lazy<GpioPin> Pin24 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin24, 35)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMISO },
Name = "BCM 19 (MISO)"
});
internal static readonly Lazy<GpioPin> Pin25 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin25, 37)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 26"
});
internal static readonly Lazy<GpioPin> Pin29 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin29, 40)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPICLK },
Name = "BCM 21 (SCLK)"
});
internal static readonly Lazy<GpioPin> Pin28 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin28, 38)
{
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMOSI },
Name = "BCM 20 (MOSI)"
});
internal static readonly Lazy<GpioPin> Pin27 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin27, 36)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 16"
});
internal static readonly Lazy<GpioPin> Pin26 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin26, 32)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 12 (PWM0)"
});
internal static readonly Lazy<GpioPin> Pin17 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin17, 3)
{
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSDA },
Name = "BCM 28 (SDA)"
});
internal static readonly Lazy<GpioPin> Pin18 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin18, 4)
{
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSCL },
Name = "BCM 29 (SCL)"
});
internal static readonly Lazy<GpioPin> Pin19 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin19, 5)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 30"
});
internal static readonly Lazy<GpioPin> Pin20 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin20, 6)
{
Capabilities = new[] { PinCapability.GP },
Name = "BCM 31"
});
#endregion
}
using System;
namespace Unosquare.RaspberryIO.Gpio {
public partial class GpioPin {
#region Static Pin Definitions
internal static readonly Lazy<GpioPin> Pin08 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin08, 3) {
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSDA },
Name = "BCM 2 (SDA)"
});
internal static readonly Lazy<GpioPin> Pin09 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin09, 5) {
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSCL },
Name = "BCM 3 (SCL)"
});
internal static readonly Lazy<GpioPin> Pin07 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin07, 7) {
Capabilities = new[] { PinCapability.GP, PinCapability.GPCLK },
Name = "BCM 4 (GPCLK0)"
});
internal static readonly Lazy<GpioPin> Pin00 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin00, 11) {
Capabilities = new[] { PinCapability.GP, PinCapability.UARTRTS },
Name = "BCM 17"
});
internal static readonly Lazy<GpioPin> Pin02 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin02, 13) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 27"
});
internal static readonly Lazy<GpioPin> Pin03 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin03, 15) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 22"
});
internal static readonly Lazy<GpioPin> Pin12 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin12, 19) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMOSI },
Name = "BCM 10 (MOSI)"
});
internal static readonly Lazy<GpioPin> Pin13 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin13, 21) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMISO },
Name = "BCM 9 (MISO)"
});
internal static readonly Lazy<GpioPin> Pin14 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin14, 23) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPICLK },
Name = "BCM 11 (SCLCK)"
});
internal static readonly Lazy<GpioPin> Pin30 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin30, 27) {
Capabilities = new[] { PinCapability.I2CSDA },
Name = "BCM 0 (ID_SD)"
});
internal static readonly Lazy<GpioPin> Pin31 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin31, 28) {
Capabilities = new[] { PinCapability.I2CSCL },
Name = "BCM 1 (ID_SC)"
});
internal static readonly Lazy<GpioPin> Pin11 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin11, 26) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPICS },
Name = "BCM 7 (CE1)"
});
internal static readonly Lazy<GpioPin> Pin10 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin10, 24) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPICS },
Name = "BCM 8 (CE0)"
});
internal static readonly Lazy<GpioPin> Pin06 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin06, 22) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 25"
});
internal static readonly Lazy<GpioPin> Pin05 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin05, 18) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 24"
});
internal static readonly Lazy<GpioPin> Pin04 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin04, 16) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 23"
});
internal static readonly Lazy<GpioPin> Pin01 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin01, 12) {
Capabilities = new[] { PinCapability.GP, PinCapability.PWM },
Name = "BCM 18 (PWM0)"
});
internal static readonly Lazy<GpioPin> Pin16 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin16, 10) {
Capabilities = new[] { PinCapability.UARTRXD },
Name = "BCM 15 (RXD)"
});
internal static readonly Lazy<GpioPin> Pin15 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin15, 8) {
Capabilities = new[] { PinCapability.UARTTXD },
Name = "BCM 14 (TXD)"
});
internal static readonly Lazy<GpioPin> Pin21 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin21, 29) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 5"
});
internal static readonly Lazy<GpioPin> Pin22 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin22, 31) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 6"
});
internal static readonly Lazy<GpioPin> Pin23 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin23, 33) {
Capabilities = new[] { PinCapability.GP, PinCapability.PWM },
Name = "BCM 13 (PWM1)"
});
internal static readonly Lazy<GpioPin> Pin24 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin24, 35) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMISO },
Name = "BCM 19 (MISO)"
});
internal static readonly Lazy<GpioPin> Pin25 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin25, 37) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 26"
});
internal static readonly Lazy<GpioPin> Pin29 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin29, 40) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPICLK },
Name = "BCM 21 (SCLK)"
});
internal static readonly Lazy<GpioPin> Pin28 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin28, 38) {
Capabilities = new[] { PinCapability.GP, PinCapability.SPIMOSI },
Name = "BCM 20 (MOSI)"
});
internal static readonly Lazy<GpioPin> Pin27 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin27, 36) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 16"
});
internal static readonly Lazy<GpioPin> Pin26 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin26, 32) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 12 (PWM0)"
});
internal static readonly Lazy<GpioPin> Pin17 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin17, 3) {
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSDA },
Name = "BCM 28 (SDA)"
});
internal static readonly Lazy<GpioPin> Pin18 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin18, 4) {
Capabilities = new[] { PinCapability.GP, PinCapability.I2CSCL },
Name = "BCM 29 (SCL)"
});
internal static readonly Lazy<GpioPin> Pin19 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin19, 5) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 30"
});
internal static readonly Lazy<GpioPin> Pin20 = new Lazy<GpioPin>(() => new GpioPin(WiringPiPin.Pin20, 6) {
Capabilities = new[] { PinCapability.GP },
Name = "BCM 31"
});
#endregion
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,93 +1,87 @@
namespace Unosquare.RaspberryIO.Gpio
{
using Native;
using Swan.Abstractions;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
/// <summary>
/// A simple wrapper for the I2c bus on the Raspberry Pi
/// </summary>
public class I2CBus : SingletonBase<I2CBus>
{
// TODO: It would be nice to integrate i2c device detection.
private static readonly object SyncRoot = new object();
private readonly Dictionary<int, I2CDevice> _devices = new Dictionary<int, I2CDevice>();
/// <summary>
/// Prevents a default instance of the <see cref="I2CBus"/> class from being created.
/// </summary>
private I2CBus()
{
// placeholder
}
/// <summary>
/// Gets the registered devices as a read only collection.
/// </summary>
public ReadOnlyCollection<I2CDevice> Devices => new ReadOnlyCollection<I2CDevice>(_devices.Values.ToArray());
/// <summary>
/// Gets the <see cref="I2CDevice"/> with the specified device identifier.
/// </summary>
/// <value>
/// The <see cref="I2CDevice"/>.
/// </value>
/// <param name="deviceId">The device identifier.</param>
/// <returns>A reference to an I2C device</returns>
public I2CDevice this[int deviceId] => GetDeviceById(deviceId);
/// <summary>
/// Gets the device by identifier.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <returns>The device reference</returns>
public I2CDevice GetDeviceById(int deviceId)
{
lock (SyncRoot)
{
return _devices[deviceId];
}
}
/// <summary>
/// Adds a device to the bus by its Id. If the device is already registered it simply returns the existing device.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <returns>The device reference</returns>
/// <exception cref="KeyNotFoundException">When the device file descriptor is not found</exception>
public I2CDevice AddDevice(int deviceId)
{
lock (SyncRoot)
{
if (_devices.ContainsKey(deviceId))
return _devices[deviceId];
var fileDescriptor = SetupFileDescriptor(deviceId);
if (fileDescriptor < 0)
throw new KeyNotFoundException($"Device with id {deviceId} could not be registered with the I2C bus. Error Code: {fileDescriptor}.");
var device = new I2CDevice(deviceId, fileDescriptor);
_devices[deviceId] = device;
return device;
}
}
/// <summary>
/// This initializes the I2C system with your given device identifier.
/// The ID is the I2C number of the device and you can use the i2cdetect program to find this out.
/// wiringPiI2CSetup() will work out which revision Raspberry Pi you have and open the appropriate device in /dev.
/// The return value is the standard Linux filehandle, or -1 if any error in which case, you can consult errno as usual.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <returns>The Linux file handle</returns>
private static int SetupFileDescriptor(int deviceId)
{
lock (SyncRoot)
{
return WiringPi.WiringPiI2CSetup(deviceId);
}
}
}
}
using Unosquare.RaspberryIO.Native;
using Unosquare.Swan.Abstractions;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System;
namespace Unosquare.RaspberryIO.Gpio {
/// <summary>
/// A simple wrapper for the I2c bus on the Raspberry Pi
/// </summary>
public class I2CBus : SingletonBase<I2CBus> {
// TODO: It would be nice to integrate i2c device detection.
private static readonly Object SyncRoot = new Object();
private readonly Dictionary<Int32, I2CDevice> _devices = new Dictionary<Int32, I2CDevice>();
/// <summary>
/// Prevents a default instance of the <see cref="I2CBus"/> class from being created.
/// </summary>
private I2CBus() {
// placeholder
}
/// <summary>
/// Gets the registered devices as a read only collection.
/// </summary>
public ReadOnlyCollection<I2CDevice> Devices => new ReadOnlyCollection<I2CDevice>(this._devices.Values.ToArray());
/// <summary>
/// Gets the <see cref="I2CDevice"/> with the specified device identifier.
/// </summary>
/// <value>
/// The <see cref="I2CDevice"/>.
/// </value>
/// <param name="deviceId">The device identifier.</param>
/// <returns>A reference to an I2C device</returns>
public I2CDevice this[Int32 deviceId] => this.GetDeviceById(deviceId);
/// <summary>
/// Gets the device by identifier.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <returns>The device reference</returns>
public I2CDevice GetDeviceById(Int32 deviceId) {
lock(SyncRoot) {
return this._devices[deviceId];
}
}
/// <summary>
/// Adds a device to the bus by its Id. If the device is already registered it simply returns the existing device.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <returns>The device reference</returns>
/// <exception cref="KeyNotFoundException">When the device file descriptor is not found</exception>
public I2CDevice AddDevice(Int32 deviceId) {
lock(SyncRoot) {
if(this._devices.ContainsKey(deviceId)) {
return this._devices[deviceId];
}
Int32 fileDescriptor = SetupFileDescriptor(deviceId);
if(fileDescriptor < 0) {
throw new KeyNotFoundException($"Device with id {deviceId} could not be registered with the I2C bus. Error Code: {fileDescriptor}.");
}
I2CDevice device = new I2CDevice(deviceId, fileDescriptor);
this._devices[deviceId] = device;
return device;
}
}
/// <summary>
/// This initializes the I2C system with your given device identifier.
/// The ID is the I2C number of the device and you can use the i2cdetect program to find this out.
/// wiringPiI2CSetup() will work out which revision Raspberry Pi you have and open the appropriate device in /dev.
/// The return value is the standard Linux filehandle, or -1 if any error in which case, you can consult errno as usual.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <returns>The Linux file handle</returns>
private static Int32 SetupFileDescriptor(Int32 deviceId) {
lock(SyncRoot) {
return WiringPi.WiringPiI2CSetup(deviceId);
}
}
}
}

View File

@ -1,195 +1,193 @@
namespace Unosquare.RaspberryIO.Gpio
{
using System;
using System.Threading.Tasks;
using Native;
/// <summary>
/// Represents a device on the I2C Bus
/// </summary>
public class I2CDevice
{
private readonly object _syncLock = new object();
/// <summary>
/// Initializes a new instance of the <see cref="I2CDevice"/> class.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <param name="fileDescriptor">The file descriptor.</param>
internal I2CDevice(int deviceId, int fileDescriptor)
{
DeviceId = deviceId;
FileDescriptor = fileDescriptor;
}
/// <summary>
/// Gets the device identifier.
/// </summary>
/// <value>
/// The device identifier.
/// </value>
public int DeviceId { get; }
/// <summary>
/// Gets the standard POSIX file descriptor.
/// </summary>
/// <value>
/// The file descriptor.
/// </value>
public int FileDescriptor { get; }
/// <summary>
/// Reads a byte from the specified file descriptor
/// </summary>
/// <returns>The byte from device</returns>
public byte Read()
{
lock (_syncLock)
{
var result = WiringPi.WiringPiI2CRead(FileDescriptor);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(Read));
return (byte)result;
}
}
/// <summary>
/// Reads a byte from the specified file descriptor
/// </summary>
/// <returns>The byte from device</returns>
public Task<byte> ReadAsync() => Task.Run(() => Read());
/// <summary>
/// Reads a buffer of the specified length, one byte at a time
/// </summary>
/// <param name="length">The length.</param>
/// <returns>The byte array from device</returns>
public byte[] Read(int length)
{
lock (_syncLock)
{
var buffer = new byte[length];
for (var i = 0; i < length; i++)
{
var result = WiringPi.WiringPiI2CRead(FileDescriptor);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(Read));
buffer[i] = (byte)result;
}
return buffer;
}
}
/// <summary>
/// Reads a buffer of the specified length, one byte at a time
/// </summary>
/// <param name="length">The length.</param>
/// <returns>The byte array from device</returns>
public Task<byte[]> ReadAsync(int length) => Task.Run(() => Read(length));
/// <summary>
/// Writes a byte of data the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
public void Write(byte data)
{
lock (_syncLock)
{
var result = WiringPi.WiringPiI2CWrite(FileDescriptor, data);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(Write));
}
}
/// <summary>
/// Writes a byte of data the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
/// <returns>The awaitable task</returns>
public Task WriteAsync(byte data) => Task.Run(() => { Write(data); });
/// <summary>
/// Writes a set of bytes to the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
public void Write(byte[] data)
{
lock (_syncLock)
{
foreach (var b in data)
{
var result = WiringPi.WiringPiI2CWrite(FileDescriptor, b);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(Write));
}
}
}
/// <summary>
/// Writes a set of bytes to the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
/// <returns>The awaitable task</returns>
public Task WriteAsync(byte[] data)
{
return Task.Run(() => { Write(data); });
}
/// <summary>
/// These write an 8 or 16-bit data value into the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <param name="data">The data.</param>
public void WriteAddressByte(int address, byte data)
{
lock (_syncLock)
{
var result = WiringPi.WiringPiI2CWriteReg8(FileDescriptor, address, data);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(WriteAddressByte));
}
}
/// <summary>
/// These write an 8 or 16-bit data value into the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <param name="data">The data.</param>
public void WriteAddressWord(int address, ushort data)
{
lock (_syncLock)
{
var result = WiringPi.WiringPiI2CWriteReg16(FileDescriptor, address, data);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(WriteAddressWord));
}
}
/// <summary>
/// These read an 8 or 16-bit value from the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <returns>The address byte from device</returns>
public byte ReadAddressByte(int address)
{
lock (_syncLock)
{
var result = WiringPi.WiringPiI2CReadReg8(FileDescriptor, address);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(ReadAddressByte));
return (byte)result;
}
}
/// <summary>
/// These read an 8 or 16-bit value from the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <returns>The address word from device</returns>
public ushort ReadAddressWord(int address)
{
lock (_syncLock)
{
var result = WiringPi.WiringPiI2CReadReg16(FileDescriptor, address);
if (result < 0) HardwareException.Throw(nameof(I2CDevice), nameof(ReadAddressWord));
return Convert.ToUInt16(result);
}
}
}
}
using System;
using System.Threading.Tasks;
using Unosquare.RaspberryIO.Native;
namespace Unosquare.RaspberryIO.Gpio {
/// <summary>
/// Represents a device on the I2C Bus
/// </summary>
public class I2CDevice {
private readonly Object _syncLock = new Object();
/// <summary>
/// Initializes a new instance of the <see cref="I2CDevice"/> class.
/// </summary>
/// <param name="deviceId">The device identifier.</param>
/// <param name="fileDescriptor">The file descriptor.</param>
internal I2CDevice(Int32 deviceId, Int32 fileDescriptor) {
this.DeviceId = deviceId;
this.FileDescriptor = fileDescriptor;
}
/// <summary>
/// Gets the device identifier.
/// </summary>
/// <value>
/// The device identifier.
/// </value>
public Int32 DeviceId {
get;
}
/// <summary>
/// Gets the standard POSIX file descriptor.
/// </summary>
/// <value>
/// The file descriptor.
/// </value>
public Int32 FileDescriptor {
get;
}
/// <summary>
/// Reads a byte from the specified file descriptor
/// </summary>
/// <returns>The byte from device</returns>
public Byte Read() {
lock(this._syncLock) {
Int32 result = WiringPi.WiringPiI2CRead(this.FileDescriptor);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(Read));
}
return (Byte)result;
}
}
/// <summary>
/// Reads a byte from the specified file descriptor
/// </summary>
/// <returns>The byte from device</returns>
public Task<Byte> ReadAsync() => Task.Run(() => this.Read());
/// <summary>
/// Reads a buffer of the specified length, one byte at a time
/// </summary>
/// <param name="length">The length.</param>
/// <returns>The byte array from device</returns>
public Byte[] Read(Int32 length) {
lock(this._syncLock) {
Byte[] buffer = new Byte[length];
for(Int32 i = 0; i < length; i++) {
Int32 result = WiringPi.WiringPiI2CRead(this.FileDescriptor);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(Read));
}
buffer[i] = (Byte)result;
}
return buffer;
}
}
/// <summary>
/// Reads a buffer of the specified length, one byte at a time
/// </summary>
/// <param name="length">The length.</param>
/// <returns>The byte array from device</returns>
public Task<Byte[]> ReadAsync(Int32 length) => Task.Run(() => this.Read(length));
/// <summary>
/// Writes a byte of data the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
public void Write(Byte data) {
lock(this._syncLock) {
Int32 result = WiringPi.WiringPiI2CWrite(this.FileDescriptor, data);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(Write));
}
}
}
/// <summary>
/// Writes a byte of data the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
/// <returns>The awaitable task</returns>
public Task WriteAsync(Byte data) => Task.Run(() => this.Write(data));
/// <summary>
/// Writes a set of bytes to the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
public void Write(Byte[] data) {
lock(this._syncLock) {
foreach(Byte b in data) {
Int32 result = WiringPi.WiringPiI2CWrite(this.FileDescriptor, b);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(Write));
}
}
}
}
/// <summary>
/// Writes a set of bytes to the specified file descriptor.
/// </summary>
/// <param name="data">The data.</param>
/// <returns>The awaitable task</returns>
public Task WriteAsync(Byte[] data) => Task.Run(() => this.Write(data));
/// <summary>
/// These write an 8 or 16-bit data value into the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <param name="data">The data.</param>
public void WriteAddressByte(Int32 address, Byte data) {
lock(this._syncLock) {
Int32 result = WiringPi.WiringPiI2CWriteReg8(this.FileDescriptor, address, data);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(WriteAddressByte));
}
}
}
/// <summary>
/// These write an 8 or 16-bit data value into the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <param name="data">The data.</param>
public void WriteAddressWord(Int32 address, UInt16 data) {
lock(this._syncLock) {
Int32 result = WiringPi.WiringPiI2CWriteReg16(this.FileDescriptor, address, data);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(WriteAddressWord));
}
}
}
/// <summary>
/// These read an 8 or 16-bit value from the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <returns>The address byte from device</returns>
public Byte ReadAddressByte(Int32 address) {
lock(this._syncLock) {
Int32 result = WiringPi.WiringPiI2CReadReg8(this.FileDescriptor, address);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(ReadAddressByte));
}
return (Byte)result;
}
}
/// <summary>
/// These read an 8 or 16-bit value from the device register indicated.
/// </summary>
/// <param name="address">The register.</param>
/// <returns>The address word from device</returns>
public UInt16 ReadAddressWord(Int32 address) {
lock(this._syncLock) {
Int32 result = WiringPi.WiringPiI2CReadReg16(this.FileDescriptor, address);
if(result < 0) {
HardwareException.Throw(nameof(I2CDevice), nameof(ReadAddressWord));
}
return Convert.ToUInt16(result);
}
}
}
}

View File

@ -1,72 +1,72 @@
namespace Unosquare.RaspberryIO.Gpio
{
using Swan.Abstractions;
using System;
using Unosquare.Swan.Abstractions;
namespace Unosquare.RaspberryIO.Gpio {
/// <summary>
/// The SPI Bus containing the 2 SPI channels
/// </summary>
public class SpiBus : SingletonBase<SpiBus> {
/// <summary>
/// The SPI Bus containing the 2 SPI channels
/// Prevents a default instance of the <see cref="SpiBus"/> class from being created.
/// </summary>
public class SpiBus : SingletonBase<SpiBus>
{
/// <summary>
/// Prevents a default instance of the <see cref="SpiBus"/> class from being created.
/// </summary>
private SpiBus()
{
// placeholder
}
#region SPI Access
/// <summary>
/// Gets or sets the channel 0 frequency in Hz.
/// </summary>
/// <value>
/// The channel0 frequency.
/// </value>
public int Channel0Frequency { get; set; }
/// <summary>
/// Gets the SPI bus on channel 1.
/// </summary>
/// <value>
/// The channel0.
/// </value>
public SpiChannel Channel0
{
get
{
if (Channel0Frequency == 0)
Channel0Frequency = SpiChannel.DefaultFrequency;
return SpiChannel.Retrieve(SpiChannelNumber.Channel0, Channel0Frequency);
}
}
/// <summary>
/// Gets or sets the channel 1 frequency in Hz
/// </summary>
/// <value>
/// The channel1 frequency.
/// </value>
public int Channel1Frequency { get; set; }
/// <summary>
/// Gets the SPI bus on channel 1.
/// </summary>
/// <value>
/// The channel1.
/// </value>
public SpiChannel Channel1
{
get
{
if (Channel1Frequency == 0)
Channel1Frequency = SpiChannel.DefaultFrequency;
return SpiChannel.Retrieve(SpiChannelNumber.Channel1, Channel1Frequency);
}
}
#endregion
}
private SpiBus() {
// placeholder
}
#region SPI Access
/// <summary>
/// Gets or sets the channel 0 frequency in Hz.
/// </summary>
/// <value>
/// The channel0 frequency.
/// </value>
public Int32 Channel0Frequency {
get; set;
}
/// <summary>
/// Gets the SPI bus on channel 1.
/// </summary>
/// <value>
/// The channel0.
/// </value>
public SpiChannel Channel0 {
get {
if(this.Channel0Frequency == 0) {
this.Channel0Frequency = SpiChannel.DefaultFrequency;
}
return SpiChannel.Retrieve(SpiChannelNumber.Channel0, this.Channel0Frequency);
}
}
/// <summary>
/// Gets or sets the channel 1 frequency in Hz
/// </summary>
/// <value>
/// The channel1 frequency.
/// </value>
public Int32 Channel1Frequency {
get; set;
}
/// <summary>
/// Gets the SPI bus on channel 1.
/// </summary>
/// <value>
/// The channel1.
/// </value>
public SpiChannel Channel1 {
get {
if(this.Channel1Frequency == 0) {
this.Channel1Frequency = SpiChannel.DefaultFrequency;
}
return SpiChannel.Retrieve(SpiChannelNumber.Channel1, this.Channel1Frequency);
}
}
#endregion
}
}

View File

@ -1,154 +1,154 @@
namespace Unosquare.RaspberryIO.Gpio
{
using Native;
using Swan;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Unosquare.RaspberryIO.Native;
using Unosquare.Swan;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace Unosquare.RaspberryIO.Gpio {
/// <summary>
/// Provides access to using the SPI buses on the GPIO.
/// SPI is a bus that works like a ring shift register
/// The number of bytes pushed is equal to the number of bytes received.
/// </summary>
public sealed class SpiChannel {
/// <summary>
/// Provides access to using the SPI buses on the GPIO.
/// SPI is a bus that works like a ring shift register
/// The number of bytes pushed is equal to the number of bytes received.
/// The minimum frequency of an SPI Channel
/// </summary>
public sealed class SpiChannel
{
/// <summary>
/// The minimum frequency of an SPI Channel
/// </summary>
public const int MinFrequency = 500000;
/// <summary>
/// The maximum frequency of an SPI channel
/// </summary>
public const int MaxFrequency = 32000000;
/// <summary>
/// The default frequency of SPI channels
/// This is set to 8 Mhz wich is typical in modern hardware.
/// </summary>
public const int DefaultFrequency = 8000000;
private static readonly object SyncRoot = new object();
private static readonly Dictionary<SpiChannelNumber, SpiChannel> Buses = new Dictionary<SpiChannelNumber, SpiChannel>();
private readonly object _syncLock = new object();
/// <summary>
/// Initializes a new instance of the <see cref="SpiChannel"/> class.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="frequency">The frequency.</param>
private SpiChannel(SpiChannelNumber channel, int frequency)
{
lock (SyncRoot)
{
Frequency = frequency.Clamp(MinFrequency, MaxFrequency);
Channel = (int)channel;
FileDescriptor = WiringPi.WiringPiSPISetup((int)channel, Frequency);
if (FileDescriptor < 0)
{
HardwareException.Throw(nameof(SpiChannel), channel.ToString());
}
}
}
/// <summary>
/// Gets the standard initialization file descriptor.
/// anything negative means error.
/// </summary>
/// <value>
/// The file descriptor.
/// </value>
public int FileDescriptor { get; }
/// <summary>
/// Gets the channel.
/// </summary>
public int Channel { get; }
/// <summary>
/// Gets the frequency.
/// </summary>
public int Frequency { get; }
/// <summary>
/// Sends data and simultaneously receives the data in the return buffer
/// </summary>
/// <param name="buffer">The buffer.</param>
/// <returns>The read bytes from the ring-style bus</returns>
public byte[] SendReceive(byte[] buffer)
{
if (buffer == null || buffer.Length == 0)
return null;
lock (_syncLock)
{
var spiBuffer = new byte[buffer.Length];
Array.Copy(buffer, spiBuffer, buffer.Length);
var result = WiringPi.WiringPiSPIDataRW(Channel, spiBuffer, spiBuffer.Length);
if (result < 0) HardwareException.Throw(nameof(SpiChannel), nameof(SendReceive));
return spiBuffer;
}
}
/// <summary>
/// Sends data and simultaneously receives the data in the return buffer
/// </summary>
/// <param name="buffer">The buffer.</param>
/// <returns>
/// The read bytes from the ring-style bus
/// </returns>
public Task<byte[]> SendReceiveAsync(byte[] buffer) => Task.Run(() => SendReceive(buffer));
/// <summary>
/// Writes the specified buffer the the underlying FileDescriptor.
/// Do not use this method if you expect data back.
/// This method is efficient if used in a fire-and-forget scenario
/// like sending data over to those long RGB LED strips
/// </summary>
/// <param name="buffer">The buffer.</param>
public void Write(byte[] buffer)
{
lock (_syncLock)
{
var result = Standard.Write(FileDescriptor, buffer, buffer.Length);
if (result < 0)
HardwareException.Throw(nameof(SpiChannel), nameof(Write));
}
}
/// <summary>
/// Writes the specified buffer the the underlying FileDescriptor.
/// Do not use this method if you expect data back.
/// This method is efficient if used in a fire-and-forget scenario
/// like sending data over to those long RGB LED strips
/// </summary>
/// <param name="buffer">The buffer.</param>
/// <returns>The awaitable task</returns>
public Task WriteAsync(byte[] buffer) => Task.Run(() => { Write(buffer); });
/// <summary>
/// Retrieves the spi bus. If the bus channel is not registered it sets it up automatically.
/// If it had been previously registered, then the bus is simply returned.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="frequency">The frequency.</param>
/// <returns>The usable SPI channel</returns>
internal static SpiChannel Retrieve(SpiChannelNumber channel, int frequency)
{
lock (SyncRoot)
{
if (Buses.ContainsKey(channel))
return Buses[channel];
var newBus = new SpiChannel(channel, frequency);
Buses[channel] = newBus;
return newBus;
}
}
}
public const Int32 MinFrequency = 500000;
/// <summary>
/// The maximum frequency of an SPI channel
/// </summary>
public const Int32 MaxFrequency = 32000000;
/// <summary>
/// The default frequency of SPI channels
/// This is set to 8 Mhz wich is typical in modern hardware.
/// </summary>
public const Int32 DefaultFrequency = 8000000;
private static readonly Object SyncRoot = new Object();
private static readonly Dictionary<SpiChannelNumber, SpiChannel> Buses = new Dictionary<SpiChannelNumber, SpiChannel>();
private readonly Object _syncLock = new Object();
/// <summary>
/// Initializes a new instance of the <see cref="SpiChannel"/> class.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="frequency">The frequency.</param>
private SpiChannel(SpiChannelNumber channel, Int32 frequency) {
lock(SyncRoot) {
this.Frequency = frequency.Clamp(MinFrequency, MaxFrequency);
this.Channel = (Int32)channel;
this.FileDescriptor = WiringPi.WiringPiSPISetup((Int32)channel, this.Frequency);
if(this.FileDescriptor < 0) {
HardwareException.Throw(nameof(SpiChannel), channel.ToString());
}
}
}
/// <summary>
/// Gets the standard initialization file descriptor.
/// anything negative means error.
/// </summary>
/// <value>
/// The file descriptor.
/// </value>
public Int32 FileDescriptor {
get;
}
/// <summary>
/// Gets the channel.
/// </summary>
public Int32 Channel {
get;
}
/// <summary>
/// Gets the frequency.
/// </summary>
public Int32 Frequency {
get;
}
/// <summary>
/// Sends data and simultaneously receives the data in the return buffer
/// </summary>
/// <param name="buffer">The buffer.</param>
/// <returns>The read bytes from the ring-style bus</returns>
public Byte[] SendReceive(Byte[] buffer) {
if(buffer == null || buffer.Length == 0) {
return null;
}
lock(this._syncLock) {
Byte[] spiBuffer = new Byte[buffer.Length];
Array.Copy(buffer, spiBuffer, buffer.Length);
Int32 result = WiringPi.WiringPiSPIDataRW(this.Channel, spiBuffer, spiBuffer.Length);
if(result < 0) {
HardwareException.Throw(nameof(SpiChannel), nameof(SendReceive));
}
return spiBuffer;
}
}
/// <summary>
/// Sends data and simultaneously receives the data in the return buffer
/// </summary>
/// <param name="buffer">The buffer.</param>
/// <returns>
/// The read bytes from the ring-style bus
/// </returns>
public Task<Byte[]> SendReceiveAsync(Byte[] buffer) => Task.Run(() => this.SendReceive(buffer));
/// <summary>
/// Writes the specified buffer the the underlying FileDescriptor.
/// Do not use this method if you expect data back.
/// This method is efficient if used in a fire-and-forget scenario
/// like sending data over to those long RGB LED strips
/// </summary>
/// <param name="buffer">The buffer.</param>
public void Write(Byte[] buffer) {
lock(this._syncLock) {
Int32 result = Standard.Write(this.FileDescriptor, buffer, buffer.Length);
if(result < 0) {
HardwareException.Throw(nameof(SpiChannel), nameof(Write));
}
}
}
/// <summary>
/// Writes the specified buffer the the underlying FileDescriptor.
/// Do not use this method if you expect data back.
/// This method is efficient if used in a fire-and-forget scenario
/// like sending data over to those long RGB LED strips
/// </summary>
/// <param name="buffer">The buffer.</param>
/// <returns>The awaitable task</returns>
public Task WriteAsync(Byte[] buffer) => Task.Run(() => this.Write(buffer));
/// <summary>
/// Retrieves the spi bus. If the bus channel is not registered it sets it up automatically.
/// If it had been previously registered, then the bus is simply returned.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="frequency">The frequency.</param>
/// <returns>The usable SPI channel</returns>
internal static SpiChannel Retrieve(SpiChannelNumber channel, Int32 frequency) {
lock(SyncRoot) {
if(Buses.ContainsKey(channel)) {
return Buses[channel];
}
SpiChannel newBus = new SpiChannel(channel, frequency);
Buses[channel] = newBus;
return newBus;
}
}
}
}

View File

@ -1,12 +1,11 @@
namespace Unosquare.RaspberryIO.Native
{
/// <summary>
/// A delegate defining a callback for an Interrupt Service Routine
/// </summary>
public delegate void InterruptServiceRoutineCallback();
/// <summary>
/// Defines the body of a thread worker
/// </summary>
public delegate void ThreadWorker();
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// A delegate defining a callback for an Interrupt Service Routine
/// </summary>
public delegate void InterruptServiceRoutineCallback();
/// <summary>
/// Defines the body of a thread worker
/// </summary>
public delegate void ThreadWorker();
}

View File

@ -1,73 +1,73 @@
namespace Unosquare.RaspberryIO.Native
{
using Swan;
using System;
using System.Runtime.InteropServices;
using Unosquare.Swan;
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// Represents a low-level exception, typically thrown when return codes from a
/// low-level operation is non-zero or in some cases when it is less than zero.
/// </summary>
/// <seealso cref="Exception" />
public class HardwareException : Exception {
/// <summary>
/// Represents a low-level exception, typically thrown when return codes from a
/// low-level operation is non-zero or in some cases when it is less than zero.
/// Initializes a new instance of the <see cref="HardwareException" /> class.
/// </summary>
/// <seealso cref="Exception" />
public class HardwareException : Exception
{
/// <summary>
/// Initializes a new instance of the <see cref="HardwareException" /> class.
/// </summary>
/// <param name="errorCode">The error code.</param>
/// <param name="component">The component.</param>
public HardwareException(int errorCode, string component)
: base($"A hardware exception occurred. Error Code: {errorCode}")
{
ExtendedMessage = null;
try
{
ExtendedMessage = Standard.Strerror(errorCode);
}
catch
{
// TODO: strerror not working great...
$"Could not retrieve native error description using {nameof(Standard.Strerror)}".Error(Pi.LoggerSource);
}
ErrorCode = errorCode;
Component = component;
}
/// <summary>
/// Gets the error code.
/// </summary>
/// <value>
/// The error code.
/// </value>
public int ErrorCode { get; }
/// <summary>
/// Gets the component.
/// </summary>
/// <value>
/// The component.
/// </value>
public string Component { get; }
/// <summary>
/// Gets the extended message (could be null).
/// </summary>
/// <value>
/// The extended message.
/// </value>
public string ExtendedMessage { get; }
/// <summary>
/// Throws a new instance of a hardware error by retrieving the last error number (errno).
/// </summary>
/// <param name="className">Name of the class.</param>
/// <param name="methodName">Name of the method.</param>
/// <exception cref="HardwareException">When an error thrown by an API call occurs</exception>
public static void Throw(string className, string methodName) => throw new HardwareException(Marshal.GetLastWin32Error(), $"{className}.{methodName}");
/// <inheritdoc />
public override string ToString() => $"{GetType()}{(string.IsNullOrWhiteSpace(Component) ? string.Empty : $" on {Component}")}: ({ErrorCode}) - {Message}";
}
/// <param name="errorCode">The error code.</param>
/// <param name="component">The component.</param>
public HardwareException(Int32 errorCode, String component)
: base($"A hardware exception occurred. Error Code: {errorCode}") {
this.ExtendedMessage = null;
try {
this.ExtendedMessage = Standard.Strerror(errorCode);
} catch {
// TODO: strerror not working great...
$"Could not retrieve native error description using {nameof(Standard.Strerror)}".Error(Pi.LoggerSource);
}
this.ErrorCode = errorCode;
this.Component = component;
}
/// <summary>
/// Gets the error code.
/// </summary>
/// <value>
/// The error code.
/// </value>
public Int32 ErrorCode {
get;
}
/// <summary>
/// Gets the component.
/// </summary>
/// <value>
/// The component.
/// </value>
public String Component {
get;
}
/// <summary>
/// Gets the extended message (could be null).
/// </summary>
/// <value>
/// The extended message.
/// </value>
public String ExtendedMessage {
get;
}
/// <summary>
/// Throws a new instance of a hardware error by retrieving the last error number (errno).
/// </summary>
/// <param name="className">Name of the class.</param>
/// <param name="methodName">Name of the method.</param>
/// <exception cref="HardwareException">When an error thrown by an API call occurs</exception>
public static void Throw(String className, String methodName) => throw new HardwareException(Marshal.GetLastWin32Error(), $"{className}.{methodName}");
/// <inheritdoc />
public override String ToString() => $"{this.GetType()}{(String.IsNullOrWhiteSpace(this.Component) ? String.Empty : $" on {this.Component}")}: ({this.ErrorCode}) - {this.Message}";
}
}

View File

@ -1,32 +1,30 @@
namespace Unosquare.RaspberryIO.Native
{
using System;
using System.Diagnostics;
using System;
using System.Diagnostics;
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// Provides access to a high- esolution, time measuring device.
/// </summary>
/// <seealso cref="Stopwatch" />
public class HighResolutionTimer : Stopwatch {
/// <summary>
/// Provides access to a high- esolution, time measuring device.
/// Initializes a new instance of the <see cref="HighResolutionTimer"/> class.
/// </summary>
/// <seealso cref="Stopwatch" />
public class HighResolutionTimer : Stopwatch
{
/// <summary>
/// Initializes a new instance of the <see cref="HighResolutionTimer"/> class.
/// </summary>
/// <exception cref="NotSupportedException">High-resolution timer not available</exception>
public HighResolutionTimer()
{
if (!IsHighResolution)
throw new NotSupportedException("High-resolution timer not available");
}
/// <summary>
/// Gets the numer of microseconds per timer tick.
/// </summary>
public static double MicrosecondsPerTick { get; } = 1000000d / Frequency;
/// <summary>
/// Gets the elapsed microseconds.
/// </summary>
public long ElapsedMicroseconds => (long)(ElapsedTicks * MicrosecondsPerTick);
}
/// <exception cref="NotSupportedException">High-resolution timer not available</exception>
public HighResolutionTimer() {
if(!IsHighResolution) {
throw new NotSupportedException("High-resolution timer not available");
}
}
/// <summary>
/// Gets the numer of microseconds per timer tick.
/// </summary>
public static Double MicrosecondsPerTick { get; } = 1000000d / Frequency;
/// <summary>
/// Gets the elapsed microseconds.
/// </summary>
public Int64 ElapsedMicroseconds => (Int64)(this.ElapsedTicks * MicrosecondsPerTick);
}
}

View File

@ -1,84 +1,80 @@
namespace Unosquare.RaspberryIO.Native
{
using Swan;
using System;
using System.Runtime.InteropServices;
using System.Text;
using Unosquare.Swan;
using System;
using System.Runtime.InteropServices;
using System.Text;
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// Provides standard libc calls using platform-invoke
/// </summary>
internal static class Standard {
internal const String LibCLibrary = "libc";
#region LibC Calls
/// <summary>
/// Provides standard libc calls using platform-invoke
/// Strerrors the specified error.
/// </summary>
internal static class Standard
{
internal const string LibCLibrary = "libc";
#region LibC Calls
/// <summary>
/// Strerrors the specified error.
/// </summary>
/// <param name="error">The error.</param>
/// <returns></returns>
public static string Strerror(int error)
{
if (!Runtime.IsUsingMonoRuntime) return StrError(error);
try
{
var buffer = new StringBuilder(256);
var result = Strerror(error, buffer, (ulong)buffer.Capacity);
return (result != -1) ? buffer.ToString() : null;
}
catch (EntryPointNotFoundException)
{
return null;
}
}
/// <summary>
/// Changes file permissions on a Unix file system
/// </summary>
/// <param name="filename">The filename.</param>
/// <param name="mode">The mode.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "chmod", SetLastError = true)]
public static extern int Chmod(string filename, uint mode);
/// <summary>
/// Converts a string to a 32 bit integer. Use endpointer as IntPtr.Zero
/// </summary>
/// <param name="numberString">The number string.</param>
/// <param name="endPointer">The end pointer.</param>
/// <param name="numberBase">The number base.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "strtol", SetLastError = true)]
public static extern int StringToInteger(string numberString, IntPtr endPointer, int numberBase);
/// <summary>
/// The write() function attempts to write nbytes from buffer to the file associated with handle. On text files, it expands each LF to a CR/LF.
/// The function returns the number of bytes written to the file. A return value of -1 indicates an error, with errno set appropriately.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="buffer">The buffer.</param>
/// <param name="count">The count.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "write", SetLastError = true)]
public static extern int Write(int fd, byte[] buffer, int count);
/// <summary>
/// Fills in the structure with information about the system.
/// </summary>
/// <param name="name">The name.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "uname", SetLastError = true)]
public static extern int Uname(out SystemName name);
[DllImport(LibCLibrary, EntryPoint = "strerror", SetLastError = true)]
private static extern string StrError(int errnum);
[DllImport("MonoPosixHelper", EntryPoint = "Mono_Posix_Syscall_strerror_r", SetLastError = true)]
private static extern int Strerror(int error, [Out] StringBuilder buffer, ulong length);
#endregion
}
/// <param name="error">The error.</param>
/// <returns></returns>
public static String Strerror(Int32 error) {
if(!Runtime.IsUsingMonoRuntime) {
return StrError(error);
}
try {
StringBuilder buffer = new StringBuilder(256);
Int32 result = Strerror(error, buffer, (UInt64)buffer.Capacity);
return (result != -1) ? buffer.ToString() : null;
} catch(EntryPointNotFoundException) {
return null;
}
}
/// <summary>
/// Changes file permissions on a Unix file system
/// </summary>
/// <param name="filename">The filename.</param>
/// <param name="mode">The mode.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "chmod", SetLastError = true)]
public static extern Int32 Chmod(String filename, UInt32 mode);
/// <summary>
/// Converts a string to a 32 bit integer. Use endpointer as IntPtr.Zero
/// </summary>
/// <param name="numberString">The number string.</param>
/// <param name="endPointer">The end pointer.</param>
/// <param name="numberBase">The number base.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "strtol", SetLastError = true)]
public static extern Int32 StringToInteger(String numberString, IntPtr endPointer, Int32 numberBase);
/// <summary>
/// The write() function attempts to write nbytes from buffer to the file associated with handle. On text files, it expands each LF to a CR/LF.
/// The function returns the number of bytes written to the file. A return value of -1 indicates an error, with errno set appropriately.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="buffer">The buffer.</param>
/// <param name="count">The count.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "write", SetLastError = true)]
public static extern Int32 Write(Int32 fd, Byte[] buffer, Int32 count);
/// <summary>
/// Fills in the structure with information about the system.
/// </summary>
/// <param name="name">The name.</param>
/// <returns>The result</returns>
[DllImport(LibCLibrary, EntryPoint = "uname", SetLastError = true)]
public static extern Int32 Uname(out SystemName name);
[DllImport(LibCLibrary, EntryPoint = "strerror", SetLastError = true)]
private static extern String StrError(Int32 errnum);
[DllImport("MonoPosixHelper", EntryPoint = "Mono_Posix_Syscall_strerror_r", SetLastError = true)]
private static extern Int32 Strerror(Int32 error, [Out] StringBuilder buffer, UInt64 length);
#endregion
}
}

View File

@ -1,47 +1,46 @@
namespace Unosquare.RaspberryIO.Native
{
using System.Runtime.InteropServices;
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// OS uname structure
/// </summary>
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
internal struct SystemName {
/// <summary>
/// OS uname structure
/// System name
/// </summary>
[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)]
internal struct SystemName
{
/// <summary>
/// System name
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public string SysName;
/// <summary>
/// Node name
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public string NodeName;
/// <summary>
/// Release level
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public string Release;
/// <summary>
/// Version level
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public string Version;
/// <summary>
/// Hardware level
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public string Machine;
/// <summary>
/// Domain name
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public string DomainName;
}
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public String SysName;
/// <summary>
/// Node name
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public String NodeName;
/// <summary>
/// Release level
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public String Release;
/// <summary>
/// Version level
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public String Version;
/// <summary>
/// Hardware level
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public String Machine;
/// <summary>
/// Domain name
/// </summary>
[MarshalAs(UnmanagedType.ByValTStr, SizeConst = 65)]
public String DomainName;
}
}

View File

@ -1,28 +1,26 @@
namespace Unosquare.RaspberryIO.Native
{
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// Defines the different threading locking keys
/// </summary>
public enum ThreadLockKey {
/// <summary>
/// Defines the different threading locking keys
/// The lock 0
/// </summary>
public enum ThreadLockKey
{
/// <summary>
/// The lock 0
/// </summary>
Lock0 = 0,
/// <summary>
/// The lock 1
/// </summary>
Lock1 = 1,
/// <summary>
/// The lock 2
/// </summary>
Lock2 = 2,
/// <summary>
/// The lock 3
/// </summary>
Lock3 = 3,
}
Lock0 = 0,
/// <summary>
/// The lock 1
/// </summary>
Lock1 = 1,
/// <summary>
/// The lock 2
/// </summary>
Lock2 = 2,
/// <summary>
/// The lock 3
/// </summary>
Lock3 = 3,
}
}

View File

@ -1,108 +1,108 @@
namespace Unosquare.RaspberryIO.Native
{
using Swan;
using Swan.Abstractions;
using System;
using Unosquare.Swan;
using Unosquare.Swan.Abstractions;
using System;
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// Provides access to timing and threading properties and methods
/// </summary>
public class Timing : SingletonBase<Timing> {
/// <summary>
/// Provides access to timing and threading properties and methods
/// Prevents a default instance of the <see cref="Timing"/> class from being created.
/// </summary>
public class Timing : SingletonBase<Timing>
{
/// <summary>
/// Prevents a default instance of the <see cref="Timing"/> class from being created.
/// </summary>
/// <exception cref="NotSupportedException">Could not initialize the GPIO controller</exception>
private Timing()
{
// placeholder
}
/// <summary>
/// This returns a number representing the number of milliseconds since your program
/// initialized the GPIO controller.
/// It returns an unsigned 32-bit number which wraps after 49 days.
/// </summary>
/// <value>
/// The milliseconds since setup.
/// </value>
public uint MillisecondsSinceSetup => WiringPi.Millis();
/// <summary>
/// This returns a number representing the number of microseconds since your
/// program initialized the GPIO controller
/// It returns an unsigned 32-bit number which wraps after approximately 71 minutes.
/// </summary>
/// <value>
/// The microseconds since setup.
/// </value>
public uint MicrosecondsSinceSetup => WiringPi.Micros();
/// <summary>
/// This causes program execution to pause for at least howLong milliseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer or approximately 49 days.
/// </summary>
/// <param name="value">The value.</param>
public static void SleepMilliseconds(uint value) => WiringPi.Delay(value);
/// <summary>
/// This causes program execution to pause for at least howLong microseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer microseconds or approximately 71 minutes.
/// Delays under 100 microseconds are timed using a hard-coded loop continually polling the system time,
/// Delays over 100 microseconds are done using the system nanosleep() function
/// You may need to consider the implications of very short delays on the overall performance of the system,
/// especially if using threads.
/// </summary>
/// <param name="value">The value.</param>
public void SleepMicroseconds(uint value) => WiringPi.DelayMicroseconds(value);
/// <summary>
/// This attempts to shift your program (or thread in a multi-threaded program) to a higher priority and
/// enables a real-time scheduling. The priority parameter should be from 0 (the default) to 99 (the maximum).
/// This wont make your program go any faster, but it will give it a bigger slice of time when other programs
/// are running. The priority parameter works relative to others so you can make one program priority 1 and
/// another priority 2 and it will have the same effect as setting one to 10 and the other to 90
/// (as long as no other programs are running with elevated priorities)
/// </summary>
/// <param name="priority">The priority.</param>
public void SetThreadPriority(int priority)
{
priority = priority.Clamp(0, 99);
var result = WiringPi.PiHiPri(priority);
if (result < 0) HardwareException.Throw(nameof(Timing), nameof(SetThreadPriority));
}
/// <summary>
/// This is really nothing more than a simplified interface to the Posix threads mechanism that Linux supports.
/// See the manual pages on Posix threads (man pthread) if you need more control over them.
/// </summary>
/// <param name="worker">The worker.</param>
/// <exception cref="ArgumentNullException">worker</exception>
public void CreateThread(ThreadWorker worker)
{
if (worker == null)
throw new ArgumentNullException(nameof(worker));
var result = WiringPi.PiThreadCreate(worker);
if (result != 0) HardwareException.Throw(nameof(Timing), nameof(CreateThread));
}
/// <summary>
/// These allow you to synchronize variable updates from your main program to any threads running in your program.
/// keyNum is a number from 0 to 3 and represents a “key”. When another process tries to lock the same key,
/// it will be stalled until the first process has unlocked the same key.
/// </summary>
/// <param name="key">The key.</param>
public void Lock(ThreadLockKey key) => WiringPi.PiLock((int)key);
/// <summary>
/// These allow you to synchronize variable updates from your main program to any threads running in your program.
/// keyNum is a number from 0 to 3 and represents a “key”. When another process tries to lock the same key,
/// it will be stalled until the first process has unlocked the same key.
/// </summary>
/// <param name="key">The key.</param>
public void Unlock(ThreadLockKey key) => WiringPi.PiUnlock((int)key);
}
/// <exception cref="NotSupportedException">Could not initialize the GPIO controller</exception>
private Timing() {
// placeholder
}
/// <summary>
/// This returns a number representing the number of milliseconds since your program
/// initialized the GPIO controller.
/// It returns an unsigned 32-bit number which wraps after 49 days.
/// </summary>
/// <value>
/// The milliseconds since setup.
/// </value>
public UInt32 MillisecondsSinceSetup => WiringPi.Millis();
/// <summary>
/// This returns a number representing the number of microseconds since your
/// program initialized the GPIO controller
/// It returns an unsigned 32-bit number which wraps after approximately 71 minutes.
/// </summary>
/// <value>
/// The microseconds since setup.
/// </value>
public UInt32 MicrosecondsSinceSetup => WiringPi.Micros();
/// <summary>
/// This causes program execution to pause for at least howLong milliseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer or approximately 49 days.
/// </summary>
/// <param name="value">The value.</param>
public static void SleepMilliseconds(UInt32 value) => WiringPi.Delay(value);
/// <summary>
/// This causes program execution to pause for at least howLong microseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer microseconds or approximately 71 minutes.
/// Delays under 100 microseconds are timed using a hard-coded loop continually polling the system time,
/// Delays over 100 microseconds are done using the system nanosleep() function
/// You may need to consider the implications of very short delays on the overall performance of the system,
/// especially if using threads.
/// </summary>
/// <param name="value">The value.</param>
public void SleepMicroseconds(UInt32 value) => WiringPi.DelayMicroseconds(value);
/// <summary>
/// This attempts to shift your program (or thread in a multi-threaded program) to a higher priority and
/// enables a real-time scheduling. The priority parameter should be from 0 (the default) to 99 (the maximum).
/// This wont make your program go any faster, but it will give it a bigger slice of time when other programs
/// are running. The priority parameter works relative to others so you can make one program priority 1 and
/// another priority 2 and it will have the same effect as setting one to 10 and the other to 90
/// (as long as no other programs are running with elevated priorities)
/// </summary>
/// <param name="priority">The priority.</param>
public void SetThreadPriority(Int32 priority) {
priority = priority.Clamp(0, 99);
Int32 result = WiringPi.PiHiPri(priority);
if(result < 0) {
HardwareException.Throw(nameof(Timing), nameof(SetThreadPriority));
}
}
/// <summary>
/// This is really nothing more than a simplified interface to the Posix threads mechanism that Linux supports.
/// See the manual pages on Posix threads (man pthread) if you need more control over them.
/// </summary>
/// <param name="worker">The worker.</param>
/// <exception cref="ArgumentNullException">worker</exception>
public void CreateThread(ThreadWorker worker) {
if(worker == null) {
throw new ArgumentNullException(nameof(worker));
}
Int32 result = WiringPi.PiThreadCreate(worker);
if(result != 0) {
HardwareException.Throw(nameof(Timing), nameof(CreateThread));
}
}
/// <summary>
/// These allow you to synchronize variable updates from your main program to any threads running in your program.
/// keyNum is a number from 0 to 3 and represents a “key”. When another process tries to lock the same key,
/// it will be stalled until the first process has unlocked the same key.
/// </summary>
/// <param name="key">The key.</param>
public void Lock(ThreadLockKey key) => WiringPi.PiLock((Int32)key);
/// <summary>
/// These allow you to synchronize variable updates from your main program to any threads running in your program.
/// keyNum is a number from 0 to 3 and represents a “key”. When another process tries to lock the same key,
/// it will be stalled until the first process has unlocked the same key.
/// </summary>
/// <param name="key">The key.</param>
public void Unlock(ThreadLockKey key) => WiringPi.PiUnlock((Int32)key);
}
}

View File

@ -1,79 +1,78 @@
namespace Unosquare.RaspberryIO.Native
{
using System.Runtime.InteropServices;
public partial class WiringPi
{
#region WiringPi - I2C Library Calls
/// <summary>
/// Simple device read. Some devices present data when you read them without having to do any register transactions.
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CRead", SetLastError = true)]
public static extern int WiringPiI2CRead(int fd);
/// <summary>
/// These read an 8-bit value from the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CReadReg8", SetLastError = true)]
public static extern int WiringPiI2CReadReg8(int fd, int reg);
/// <summary>
/// These read a 16-bit value from the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CReadReg16", SetLastError = true)]
public static extern int WiringPiI2CReadReg16(int fd, int reg);
/// <summary>
/// Simple device write. Some devices accept data this way without needing to access any internal registers.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="data">The data.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CWrite", SetLastError = true)]
public static extern int WiringPiI2CWrite(int fd, int data);
/// <summary>
/// These write an 8-bit data value into the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <param name="data">The data.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CWriteReg8", SetLastError = true)]
public static extern int WiringPiI2CWriteReg8(int fd, int reg, int data);
/// <summary>
/// These write a 16-bit data value into the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <param name="data">The data.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CWriteReg16", SetLastError = true)]
public static extern int WiringPiI2CWriteReg16(int fd, int reg, int data);
/// <summary>
/// This initialises the I2C system with your given device identifier.
/// The ID is the I2C number of the device and you can use the i2cdetect program to find this out. wiringPiI2CSetup()
/// will work out which revision Raspberry Pi you have and open the appropriate device in /dev.
/// The return value is the standard Linux filehandle, or -1 if any error in which case, you can consult errno as usual.
/// E.g. the popular MCP23017 GPIO expander is usually device Id 0x20, so this is the number you would pass into wiringPiI2CSetup().
/// </summary>
/// <param name="devId">The dev identifier.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CSetup", SetLastError = true)]
public static extern int WiringPiI2CSetup(int devId);
#endregion
}
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
public partial class WiringPi {
#region WiringPi - I2C Library Calls
/// <summary>
/// Simple device read. Some devices present data when you read them without having to do any register transactions.
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CRead", SetLastError = true)]
public static extern Int32 WiringPiI2CRead(Int32 fd);
/// <summary>
/// These read an 8-bit value from the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CReadReg8", SetLastError = true)]
public static extern Int32 WiringPiI2CReadReg8(Int32 fd, Int32 reg);
/// <summary>
/// These read a 16-bit value from the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CReadReg16", SetLastError = true)]
public static extern Int32 WiringPiI2CReadReg16(Int32 fd, Int32 reg);
/// <summary>
/// Simple device write. Some devices accept data this way without needing to access any internal registers.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="data">The data.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CWrite", SetLastError = true)]
public static extern Int32 WiringPiI2CWrite(Int32 fd, Int32 data);
/// <summary>
/// These write an 8-bit data value into the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <param name="data">The data.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CWriteReg8", SetLastError = true)]
public static extern Int32 WiringPiI2CWriteReg8(Int32 fd, Int32 reg, Int32 data);
/// <summary>
/// These write a 16-bit data value into the device register indicated.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="reg">The reg.</param>
/// <param name="data">The data.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CWriteReg16", SetLastError = true)]
public static extern Int32 WiringPiI2CWriteReg16(Int32 fd, Int32 reg, Int32 data);
/// <summary>
/// This initialises the I2C system with your given device identifier.
/// The ID is the I2C number of the device and you can use the i2cdetect program to find this out. wiringPiI2CSetup()
/// will work out which revision Raspberry Pi you have and open the appropriate device in /dev.
/// The return value is the standard Linux filehandle, or -1 if any error in which case, you can consult errno as usual.
/// E.g. the popular MCP23017 GPIO expander is usually device Id 0x20, so this is the number you would pass into wiringPiI2CSetup().
/// </summary>
/// <param name="devId">The dev identifier.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiI2CSetup", SetLastError = true)]
public static extern Int32 WiringPiI2CSetup(Int32 devId);
#endregion
}
}

View File

@ -1,73 +1,72 @@
namespace Unosquare.RaspberryIO.Native
{
using System.Runtime.InteropServices;
public partial class WiringPi
{
#region WiringPi - Serial Port
/// <summary>
/// This opens and initialises the serial device and sets the baud rate. It sets the port into “raw” mode (character at a time and no translations),
/// and sets the read timeout to 10 seconds. The return value is the file descriptor or -1 for any error, in which case errno will be set as appropriate.
/// The wiringSerial library is intended to provide simplified control suitable for most applications, however if you need advanced control
/// e.g. parity control, modem control lines (via a USB adapter, there are none on the Pis on-board UART!) and so on,
/// then you need to do some of this the old fashioned way.
/// </summary>
/// <param name="device">The device.</param>
/// <param name="baud">The baud.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialOpen", SetLastError = true)]
public static extern int SerialOpen(string device, int baud);
/// <summary>
/// Closes the device identified by the file descriptor given.
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialClose", SetLastError = true)]
public static extern int SerialClose(int fd);
/// <summary>
/// Sends the single byte to the serial device identified by the given file descriptor.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="c">The c.</param>
[DllImport(WiringPiLibrary, EntryPoint = "serialPutchar", SetLastError = true)]
public static extern void SerialPutchar(int fd, byte c);
/// <summary>
/// Sends the nul-terminated string to the serial device identified by the given file descriptor.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="s">The s.</param>
[DllImport(WiringPiLibrary, EntryPoint = "serialPuts", SetLastError = true)]
public static extern void SerialPuts(int fd, string s);
/// <summary>
/// Returns the number of characters available for reading, or -1 for any error condition,
/// in which case errno will be set appropriately.
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialDataAvail", SetLastError = true)]
public static extern int SerialDataAvail(int fd);
/// <summary>
/// Returns the next character available on the serial device.
/// This call will block for up to 10 seconds if no data is available (when it will return -1)
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialGetchar", SetLastError = true)]
public static extern int SerialGetchar(int fd);
/// <summary>
/// This discards all data received, or waiting to be send down the given device.
/// </summary>
/// <param name="fd">The fd.</param>
[DllImport(WiringPiLibrary, EntryPoint = "serialFlush", SetLastError = true)]
public static extern void SerialFlush(int fd);
#endregion
}
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
public partial class WiringPi {
#region WiringPi - Serial Port
/// <summary>
/// This opens and initialises the serial device and sets the baud rate. It sets the port into “raw” mode (character at a time and no translations),
/// and sets the read timeout to 10 seconds. The return value is the file descriptor or -1 for any error, in which case errno will be set as appropriate.
/// The wiringSerial library is intended to provide simplified control suitable for most applications, however if you need advanced control
/// e.g. parity control, modem control lines (via a USB adapter, there are none on the Pis on-board UART!) and so on,
/// then you need to do some of this the old fashioned way.
/// </summary>
/// <param name="device">The device.</param>
/// <param name="baud">The baud.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialOpen", SetLastError = true)]
public static extern Int32 SerialOpen(String device, Int32 baud);
/// <summary>
/// Closes the device identified by the file descriptor given.
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialClose", SetLastError = true)]
public static extern Int32 SerialClose(Int32 fd);
/// <summary>
/// Sends the single byte to the serial device identified by the given file descriptor.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="c">The c.</param>
[DllImport(WiringPiLibrary, EntryPoint = "serialPutchar", SetLastError = true)]
public static extern void SerialPutchar(Int32 fd, Byte c);
/// <summary>
/// Sends the nul-terminated string to the serial device identified by the given file descriptor.
/// </summary>
/// <param name="fd">The fd.</param>
/// <param name="s">The s.</param>
[DllImport(WiringPiLibrary, EntryPoint = "serialPuts", SetLastError = true)]
public static extern void SerialPuts(Int32 fd, String s);
/// <summary>
/// Returns the number of characters available for reading, or -1 for any error condition,
/// in which case errno will be set appropriately.
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialDataAvail", SetLastError = true)]
public static extern Int32 SerialDataAvail(Int32 fd);
/// <summary>
/// Returns the next character available on the serial device.
/// This call will block for up to 10 seconds if no data is available (when it will return -1)
/// </summary>
/// <param name="fd">The fd.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "serialGetchar", SetLastError = true)]
public static extern Int32 SerialGetchar(Int32 fd);
/// <summary>
/// This discards all data received, or waiting to be send down the given device.
/// </summary>
/// <param name="fd">The fd.</param>
[DllImport(WiringPiLibrary, EntryPoint = "serialFlush", SetLastError = true)]
public static extern void SerialFlush(Int32 fd);
#endregion
}
}

View File

@ -1,36 +1,35 @@
namespace Unosquare.RaspberryIO.Native
{
using System.Runtime.InteropServices;
public partial class WiringPi
{
#region WiringPi - Shift Library
/// <summary>
/// This shifts an 8-bit data value in with the data appearing on the dPin and the clock being sent out on the cPin.
/// Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high.
/// (So cPin high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.
/// </summary>
/// <param name="dPin">The d pin.</param>
/// <param name="cPin">The c pin.</param>
/// <param name="order">The order.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "shiftIn", SetLastError = true)]
public static extern byte ShiftIn(byte dPin, byte cPin, byte order);
/// <summary>
/// The shifts an 8-bit data value val out with the data being sent out on dPin and the clock being sent out on the cPin.
/// order is as above. Data is clocked out on the rising or falling edge ie. dPin is set, then cPin is taken high then low
/// repeated for the 8 bits.
/// </summary>
/// <param name="dPin">The d pin.</param>
/// <param name="cPin">The c pin.</param>
/// <param name="order">The order.</param>
/// <param name="val">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "shiftOut", SetLastError = true)]
public static extern void ShiftOut(byte dPin, byte cPin, byte order, byte val);
#endregion
}
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
public partial class WiringPi {
#region WiringPi - Shift Library
/// <summary>
/// This shifts an 8-bit data value in with the data appearing on the dPin and the clock being sent out on the cPin.
/// Order is either LSBFIRST or MSBFIRST. The data is sampled after the cPin goes high.
/// (So cPin high, sample data, cPin low, repeat for 8 bits) The 8-bit value is returned by the function.
/// </summary>
/// <param name="dPin">The d pin.</param>
/// <param name="cPin">The c pin.</param>
/// <param name="order">The order.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "shiftIn", SetLastError = true)]
public static extern Byte ShiftIn(Byte dPin, Byte cPin, Byte order);
/// <summary>
/// The shifts an 8-bit data value val out with the data being sent out on dPin and the clock being sent out on the cPin.
/// order is as above. Data is clocked out on the rising or falling edge ie. dPin is set, then cPin is taken high then low
/// repeated for the 8 bits.
/// </summary>
/// <param name="dPin">The d pin.</param>
/// <param name="cPin">The c pin.</param>
/// <param name="order">The order.</param>
/// <param name="val">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "shiftOut", SetLastError = true)]
public static extern void ShiftOut(Byte dPin, Byte cPin, Byte order, Byte val);
#endregion
}
}

View File

@ -1,64 +1,63 @@
namespace Unosquare.RaspberryIO.Native
{
using System.Runtime.InteropServices;
public partial class WiringPi
{
#region WiringPi - Soft PWM (https://github.com/WiringPi/WiringPi/blob/master/wiringPi/softPwm.h)
/// <summary>
/// This creates a software controlled PWM pin. You can use any GPIO pin and the pin numbering will be that of the wiringPiSetup()
/// function you used. Use 100 for the pwmRange, then the value can be anything from 0 (off) to 100 (fully on) for the given pin.
/// The return value is 0 for success. Anything else and you should check the global errno variable to see what went wrong.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="initialValue">The initial value.</param>
/// <param name="pwmRange">The PWM range.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "softPwmCreate", SetLastError = true)]
public static extern int SoftPwmCreate(int pin, int initialValue, int pwmRange);
/// <summary>
/// This updates the PWM value on the given pin. The value is checked to be in-range and pins that havent previously
/// been initialized via softPwmCreate will be silently ignored.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softPwmWrite", SetLastError = true)]
public static extern void SoftPwmWrite(int pin, int value);
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="pin">The pin.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softPwmStop", SetLastError = true)]
public static extern void SoftPwmStop(int pin);
/// <summary>
/// This creates a software controlled tone pin. You can use any GPIO pin and the pin numbering will be that of the wiringPiSetup() function you used.
/// The return value is 0 for success. Anything else and you should check the global errno variable to see what went wrong.
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "softToneCreate", SetLastError = true)]
public static extern int SoftToneCreate(int pin);
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="pin">The pin.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softToneStop", SetLastError = true)]
public static extern void SoftToneStop(int pin);
/// <summary>
/// This updates the tone frequency value on the given pin. The tone will be played until you set the frequency to 0.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="freq">The freq.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softToneWrite", SetLastError = true)]
public static extern void SoftToneWrite(int pin, int freq);
#endregion
}
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
public partial class WiringPi {
#region WiringPi - Soft PWM (https://github.com/WiringPi/WiringPi/blob/master/wiringPi/softPwm.h)
/// <summary>
/// This creates a software controlled PWM pin. You can use any GPIO pin and the pin numbering will be that of the wiringPiSetup()
/// function you used. Use 100 for the pwmRange, then the value can be anything from 0 (off) to 100 (fully on) for the given pin.
/// The return value is 0 for success. Anything else and you should check the global errno variable to see what went wrong.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="initialValue">The initial value.</param>
/// <param name="pwmRange">The PWM range.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "softPwmCreate", SetLastError = true)]
public static extern Int32 SoftPwmCreate(Int32 pin, Int32 initialValue, Int32 pwmRange);
/// <summary>
/// This updates the PWM value on the given pin. The value is checked to be in-range and pins that havent previously
/// been initialized via softPwmCreate will be silently ignored.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softPwmWrite", SetLastError = true)]
public static extern void SoftPwmWrite(Int32 pin, Int32 value);
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="pin">The pin.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softPwmStop", SetLastError = true)]
public static extern void SoftPwmStop(Int32 pin);
/// <summary>
/// This creates a software controlled tone pin. You can use any GPIO pin and the pin numbering will be that of the wiringPiSetup() function you used.
/// The return value is 0 for success. Anything else and you should check the global errno variable to see what went wrong.
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "softToneCreate", SetLastError = true)]
public static extern Int32 SoftToneCreate(Int32 pin);
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="pin">The pin.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softToneStop", SetLastError = true)]
public static extern void SoftToneStop(Int32 pin);
/// <summary>
/// This updates the tone frequency value on the given pin. The tone will be played until you set the frequency to 0.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="freq">The freq.</param>
[DllImport(WiringPiLibrary, EntryPoint = "softToneWrite", SetLastError = true)]
public static extern void SoftToneWrite(Int32 pin, Int32 freq);
#endregion
}
}

View File

@ -1,53 +1,52 @@
namespace Unosquare.RaspberryIO.Native
{
using System.Runtime.InteropServices;
public partial class WiringPi
{
#region WiringPi - SPI Library Calls
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="channel">The channel.</param>
/// <returns>Unknown</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPIGetFd", SetLastError = true)]
public static extern int WiringPiSPIGetFd(int channel);
/// <summary>
/// This performs a simultaneous write/read transaction over the selected SPI bus. Data that was in your buffer is overwritten by data returned from the SPI bus.
/// Thats all there is in the helper library. It is possible to do simple read and writes over the SPI bus using the standard read() and write() system calls though
/// write() may be better to use for sending data to chains of shift registers, or those LED strings where you send RGB triplets of data.
/// Devices such as A/D and D/A converters usually need to perform a concurrent write/read transaction to work.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="data">The data.</param>
/// <param name="len">The length.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPIDataRW", SetLastError = true)]
public static extern int WiringPiSPIDataRW(int channel, byte[] data, int len);
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="speed">The speed.</param>
/// <param name="mode">The mode.</param>
/// <returns>Unkown</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPISetupMode", SetLastError = true)]
public static extern int WiringPiSPISetupMode(int channel, int speed, int mode);
/// <summary>
/// This is the way to initialize a channel (The Pi has 2 channels; 0 and 1). The speed parameter is an integer
/// in the range 500,000 through 32,000,000 and represents the SPI clock speed in Hz.
/// The returned value is the Linux file-descriptor for the device, or -1 on error. If an error has happened, you may use the standard errno global variable to see why.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="speed">The speed.</param>
/// <returns>The Linux file descriptor for the device or -1 for error</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPISetup", SetLastError = true)]
public static extern int WiringPiSPISetup(int channel, int speed);
#endregion
}
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
public partial class WiringPi {
#region WiringPi - SPI Library Calls
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="channel">The channel.</param>
/// <returns>Unknown</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPIGetFd", SetLastError = true)]
public static extern Int32 WiringPiSPIGetFd(Int32 channel);
/// <summary>
/// This performs a simultaneous write/read transaction over the selected SPI bus. Data that was in your buffer is overwritten by data returned from the SPI bus.
/// Thats all there is in the helper library. It is possible to do simple read and writes over the SPI bus using the standard read() and write() system calls though
/// write() may be better to use for sending data to chains of shift registers, or those LED strings where you send RGB triplets of data.
/// Devices such as A/D and D/A converters usually need to perform a concurrent write/read transaction to work.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="data">The data.</param>
/// <param name="len">The length.</param>
/// <returns>The result</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPIDataRW", SetLastError = true)]
public static extern Int32 WiringPiSPIDataRW(Int32 channel, Byte[] data, Int32 len);
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="speed">The speed.</param>
/// <param name="mode">The mode.</param>
/// <returns>Unkown</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPISetupMode", SetLastError = true)]
public static extern Int32 WiringPiSPISetupMode(Int32 channel, Int32 speed, Int32 mode);
/// <summary>
/// This is the way to initialize a channel (The Pi has 2 channels; 0 and 1). The speed parameter is an integer
/// in the range 500,000 through 32,000,000 and represents the SPI clock speed in Hz.
/// The returned value is the Linux file-descriptor for the device, or -1 on error. If an error has happened, you may use the standard errno global variable to see why.
/// </summary>
/// <param name="channel">The channel.</param>
/// <param name="speed">The speed.</param>
/// <returns>The Linux file descriptor for the device or -1 for error</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSPISetup", SetLastError = true)]
public static extern Int32 WiringPiSPISetup(Int32 channel, Int32 speed);
#endregion
}
}

View File

@ -1,394 +1,392 @@
namespace Unosquare.RaspberryIO.Native
{
using System;
using System.Runtime.InteropServices;
using System;
using System.Runtime.InteropServices;
namespace Unosquare.RaspberryIO.Native {
/// <summary>
/// Provides native C WiringPi Library function call wrappers
/// All credit for the native library goes to the author of http://wiringpi.com/
/// The wrappers were written based on https://github.com/WiringPi/WiringPi/blob/master/wiringPi/wiringPi.h
/// </summary>
public partial class WiringPi {
internal const String WiringPiLibrary = "libwiringPi.so.2.46";
#region WiringPi - Core Functions (https://github.com/WiringPi/WiringPi/blob/master/wiringPi/wiringPi.h)
/// <summary>
/// Provides native C WiringPi Library function call wrappers
/// All credit for the native library goes to the author of http://wiringpi.com/
/// The wrappers were written based on https://github.com/WiringPi/WiringPi/blob/master/wiringPi/wiringPi.h
/// This initialises wiringPi and assumes that the calling program is going to be using the wiringPi pin numbering scheme.
/// This is a simplified numbering scheme which provides a mapping from virtual pin numbers 0 through 16 to the real underlying Broadcom GPIO pin numbers.
/// See the pins page for a table which maps the wiringPi pin number to the Broadcom GPIO pin number to the physical location on the edge connector.
/// This function needs to be called with root privileges.
/// </summary>
public partial class WiringPi
{
internal const string WiringPiLibrary = "libwiringPi.so.2.46";
#region WiringPi - Core Functions (https://github.com/WiringPi/WiringPi/blob/master/wiringPi/wiringPi.h)
/// <summary>
/// This initialises wiringPi and assumes that the calling program is going to be using the wiringPi pin numbering scheme.
/// This is a simplified numbering scheme which provides a mapping from virtual pin numbers 0 through 16 to the real underlying Broadcom GPIO pin numbers.
/// See the pins page for a table which maps the wiringPi pin number to the Broadcom GPIO pin number to the physical location on the edge connector.
/// This function needs to be called with root privileges.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetup", SetLastError = true)]
public static extern int WiringPiSetup();
/// <summary>
/// This initialises wiringPi but uses the /sys/class/gpio interface rather than accessing the hardware directly.
/// This can be called as a non-root user provided the GPIO pins have been exported before-hand using the gpio program.
/// Pin numbering in this mode is the native Broadcom GPIO numbers the same as wiringPiSetupGpio() above,
/// so be aware of the differences between Rev 1 and Rev 2 boards.
///
/// Note: In this mode you can only use the pins which have been exported via the /sys/class/gpio interface before you run your program.
/// You can do this in a separate shell-script, or by using the system() function from inside your program to call the gpio program.
/// Also note that some functions have no effect when using this mode as theyre not currently possible to action unless called with root privileges.
/// (although you can use system() to call gpio to set/change modes if needed)
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetupSys", SetLastError = true)]
public static extern int WiringPiSetupSys();
/// <summary>
/// This is identical to wiringPiSetup, however it allows the calling programs to use the Broadcom GPIO
/// pin numbers directly with no re-mapping.
/// As above, this function needs to be called with root privileges, and note that some pins are different
/// from revision 1 to revision 2 boards.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetupGpio", SetLastError = true)]
public static extern int WiringPiSetupGpio();
/// <summary>
/// Identical to wiringPiSetup, however it allows the calling programs to use the physical pin numbers on the P1 connector only.
/// This function needs to be called with root privileges.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetupPhys", SetLastError = true)]
public static extern int WiringPiSetupPhys();
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="mode">The mode.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pinModeAlt", SetLastError = true)]
public static extern void PinModeAlt(int pin, int mode);
/// <summary>
/// This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK.
/// Note that only wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4)
/// supports CLOCK output modes.
///
/// This function has no effect when in Sys mode. If you need to change the pin mode, then you can
/// do it with the gpio program in a script before you start your program.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="mode">The mode.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pinMode", SetLastError = true)]
public static extern void PinMode(int pin, int mode);
/// <summary>
/// This sets the pull-up or pull-down resistor mode on the given pin, which should be set as an input.
/// Unlike the Arduino, the BCM2835 has both pull-up an down internal resistors. The parameter pud should be; PUD_OFF,
/// (no pull up/down), PUD_DOWN (pull to ground) or PUD_UP (pull to 3.3v) The internal pull up/down resistors
/// have a value of approximately 50KΩ on the Raspberry Pi.
///
/// This function has no effect on the Raspberry Pis GPIO pins when in Sys mode.
/// If you need to activate a pull-up/pull-down, then you can do it with the gpio program in a script before you start your program.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="pud">The pud.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pullUpDnControl", SetLastError = true)]
public static extern void PullUpDnControl(int pin, int pud);
/// <summary>
/// This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0) depending on the logic level at the pin.
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "digitalRead", SetLastError = true)]
public static extern int DigitalRead(int pin);
/// <summary>
/// Writes the value HIGH or LOW (1 or 0) to the given pin which must have been previously set as an output.
/// WiringPi treats any non-zero number as HIGH, however 0 is the only representation of LOW.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "digitalWrite", SetLastError = true)]
public static extern void DigitalWrite(int pin, int value);
/// <summary>
/// Writes the value to the PWM register for the given pin. The Raspberry Pi has one
/// on-board PWM pin, pin 1 (BMC_GPIO 18, Phys 12) and the range is 0-1024.
/// Other PWM devices may have other PWM ranges.
/// This function is not able to control the Pis on-board PWM when in Sys mode.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmWrite", SetLastError = true)]
public static extern void PwmWrite(int pin, int value);
/// <summary>
/// This returns the value read on the supplied analog input pin. You will need to
/// register additional analog modules to enable this function for devices such as the Gertboard, quick2Wire analog board, etc.
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "analogRead", SetLastError = true)]
public static extern int AnalogRead(int pin);
/// <summary>
/// This writes the given value to the supplied analog pin. You will need to register additional
/// analog modules to enable this function for devices such as the Gertboard.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "analogWrite", SetLastError = true)]
public static extern void AnalogWrite(int pin, int value);
/// <summary>
/// This returns the board revision of the Raspberry Pi. It will be either 1 or 2. Some of the BCM_GPIO pins changed number and
/// function when moving from board revision 1 to 2, so if you are using BCM_GPIO pin numbers, then you need to be aware of the differences.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piBoardRev", SetLastError = true)]
public static extern int PiBoardRev();
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="model">The model.</param>
/// <param name="mem">The memory.</param>
/// <param name="maker">The maker.</param>
/// <param name="overVolted">The over volted.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piBoardId", SetLastError = true)]
public static extern int PiBoardId(ref int model, ref int mem, ref int maker, ref int overVolted);
/// <summary>
/// This returns the BCM_GPIO pin number of the supplied wiringPi pin. It takes the board revision into account.
/// </summary>
/// <param name="wPiPin">The w pi pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wpiPinToGpio", SetLastError = true)]
public static extern int WpiPinToGpio(int wPiPin);
/// <summary>
/// This returns the BCM_GPIO pin number of the supplied physical pin on the P1 connector.
/// </summary>
/// <param name="physPin">The physical pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "physPinToGpio", SetLastError = true)]
public static extern int PhysPinToGpio(int physPin);
/// <summary>
/// This sets the “strength” of the pad drivers for a particular group of pins.
/// There are 3 groups of pins and the drive strength is from 0 to 7. Do not use this unless you know what you are doing.
/// </summary>
/// <param name="group">The group.</param>
/// <param name="value">The value.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "setPadDrive", SetLastError = true)]
public static extern int SetPadDrive(int group, int value);
/// <summary>
/// Undocumented function
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "getAlt", SetLastError = true)]
public static extern int GetAlt(int pin);
/// <summary>
/// Undocumented function
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="freq">The freq.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "pwmToneWrite", SetLastError = true)]
public static extern int PwmToneWrite(int pin, int freq);
/// <summary>
/// This writes the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to set all 8 bits at once to a particular value, although it still takes two write operations to the Pis GPIO hardware.
/// </summary>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "digitalWriteByte", SetLastError = true)]
public static extern void DigitalWriteByte(int value);
/// <summary>
/// This writes the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to set all 8 bits at once to a particular value, although it still takes two write operations to the Pis GPIO hardware.
/// </summary>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "digitalWriteByte2", SetLastError = true)]
public static extern void DigitalWriteByte2(int value);
/// <summary>
/// Undocumented function
/// This reads the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to get all 8 bits at once to a particular value.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "digitalReadByte", SetLastError = true)]
public static extern uint DigitalReadByte();
/// <summary>
/// Undocumented function
/// This reads the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to get all 8 bits at once to a particular value.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "digitalReadByte2", SetLastError = true)]
public static extern uint DigitalReadByte2();
/// <summary>
/// The PWM generator can run in 2 modes “balanced” and “mark:space”. The mark:space mode is traditional,
/// however the default mode in the Pi is “balanced”. You can switch modes by supplying the parameter: PWM_MODE_BAL or PWM_MODE_MS.
/// </summary>
/// <param name="mode">The mode.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmSetMode", SetLastError = true)]
public static extern void PwmSetMode(int mode);
/// <summary>
/// This sets the range register in the PWM generator. The default is 1024.
/// </summary>
/// <param name="range">The range.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmSetRange", SetLastError = true)]
public static extern void PwmSetRange(uint range);
/// <summary>
/// This sets the divisor for the PWM clock.
/// Note: The PWM control functions can not be used when in Sys mode.
/// To understand more about the PWM system, youll need to read the Broadcom ARM peripherals manual.
/// </summary>
/// <param name="divisor">The divisor.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmSetClock", SetLastError = true)]
public static extern void PwmSetClock(int divisor);
/// <summary>
/// Undocumented function
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="freq">The freq.</param>
[DllImport(WiringPiLibrary, EntryPoint = "gpioClockSet", SetLastError = true)]
public static extern void GpioClockSet(int pin, int freq);
/// <summary>
/// Note: Jan 2013: The waitForInterrupt() function is deprecated you should use the newer and easier to use wiringPiISR() function below.
/// When called, it will wait for an interrupt event to happen on that pin and your program will be stalled. The timeOut parameter is given in milliseconds,
/// or can be -1 which means to wait forever.
/// The return value is -1 if an error occurred (and errno will be set appropriately), 0 if it timed out, or 1 on a successful interrupt event.
/// Before you call waitForInterrupt, you must first initialise the GPIO pin and at present the only way to do this is to use the gpio program, either
/// in a script, or using the system() call from inside your program.
/// e.g. We want to wait for a falling-edge interrupt on GPIO pin 0, so to setup the hardware, we need to run: gpio edge 0 falling
/// before running the program.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="timeout">The timeout.</param>
/// <returns>The result code</returns>
[Obsolete]
[DllImport(WiringPiLibrary, EntryPoint = "waitForInterrupt", SetLastError = true)]
public static extern int WaitForInterrupt(int pin, int timeout);
/// <summary>
/// This function registers a function to received interrupts on the specified pin.
/// The edgeType parameter is either INT_EDGE_FALLING, INT_EDGE_RISING, INT_EDGE_BOTH or INT_EDGE_SETUP.
/// If it is INT_EDGE_SETUP then no initialisation of the pin will happen its assumed that you have already setup the pin elsewhere
/// (e.g. with the gpio program), but if you specify one of the other types, then the pin will be exported and initialised as specified.
/// This is accomplished via a suitable call to the gpio utility program, so it need to be available.
/// The pin number is supplied in the current mode native wiringPi, BCM_GPIO, physical or Sys modes.
/// This function will work in any mode, and does not need root privileges to work.
/// The function will be called when the interrupt triggers. When it is triggered, its cleared in the dispatcher before calling your function,
/// so if a subsequent interrupt fires before you finish your handler, then it wont be missed. (However it can only track one more interrupt,
/// if more than one interrupt fires while one is being handled then they will be ignored)
/// This function is run at a high priority (if the program is run using sudo, or as root) and executes concurrently with the main program.
/// It has full access to all the global variables, open file handles and so on.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="mode">The mode.</param>
/// <param name="method">The method.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiISR", SetLastError = true)]
public static extern int WiringPiISR(int pin, int mode, InterruptServiceRoutineCallback method);
/// <summary>
/// This function creates a thread which is another function in your program previously declared using the PI_THREAD declaration.
/// This function is then run concurrently with your main program. An example may be to have this function wait for an interrupt while
/// your program carries on doing other tasks. The thread can indicate an event, or action by using global variables to
/// communicate back to the main program, or other threads.
/// </summary>
/// <param name="method">The method.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piThreadCreate", SetLastError = true)]
public static extern int PiThreadCreate(ThreadWorker method);
/// <summary>
/// These allow you to synchronise variable updates from your main program to any threads running in your program. keyNum is a number from 0 to 3 and represents a key.
/// When another process tries to lock the same key, it will be stalled until the first process has unlocked the same key.
/// You may need to use these functions to ensure that you get valid data when exchanging data between your main program and a thread
/// otherwise its possible that the thread could wake-up halfway during your data copy and change the data
/// so the data you end up copying is incomplete, or invalid. See the wfi.c program in the examples directory for an example.
/// </summary>
/// <param name="key">The key.</param>
[DllImport(WiringPiLibrary, EntryPoint = "piLock", SetLastError = true)]
public static extern void PiLock(int key);
/// <summary>
/// These allow you to synchronise variable updates from your main program to any threads running in your program. keyNum is a number from 0 to 3 and represents a key.
/// When another process tries to lock the same key, it will be stalled until the first process has unlocked the same key.
/// You may need to use these functions to ensure that you get valid data when exchanging data between your main program and a thread
/// otherwise its possible that the thread could wake-up halfway during your data copy and change the data
/// so the data you end up copying is incomplete, or invalid. See the wfi.c program in the examples directory for an example.
/// </summary>
/// <param name="key">The key.</param>
[DllImport(WiringPiLibrary, EntryPoint = "piUnlock", SetLastError = true)]
public static extern void PiUnlock(int key);
/// <summary>
/// This attempts to shift your program (or thread in a multi-threaded program) to a higher priority
/// and enables a real-time scheduling. The priority parameter should be from 0 (the default) to 99 (the maximum).
/// This wont make your program go any faster, but it will give it a bigger slice of time when other programs are running.
/// The priority parameter works relative to others so you can make one program priority 1 and another priority 2
/// and it will have the same effect as setting one to 10 and the other to 90 (as long as no other
/// programs are running with elevated priorities)
/// The return value is 0 for success and -1 for error. If an error is returned, the program should then consult the errno global variable, as per the usual conventions.
/// Note: Only programs running as root can change their priority. If called from a non-root program then nothing happens.
/// </summary>
/// <param name="priority">The priority.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piHiPri", SetLastError = true)]
public static extern int PiHiPri(int priority);
/// <summary>
/// This causes program execution to pause for at least howLong milliseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer or approximately 49 days.
/// </summary>
/// <param name="howLong">The how long.</param>
[DllImport(WiringPiLibrary, EntryPoint = "delay", SetLastError = true)]
public static extern void Delay(uint howLong);
/// <summary>
/// This causes program execution to pause for at least howLong microseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer microseconds or approximately 71 minutes.
/// Delays under 100 microseconds are timed using a hard-coded loop continually polling the system time,
/// Delays over 100 microseconds are done using the system nanosleep() function You may need to consider the implications
/// of very short delays on the overall performance of the system, especially if using threads.
/// </summary>
/// <param name="howLong">The how long.</param>
[DllImport(WiringPiLibrary, EntryPoint = "delayMicroseconds", SetLastError = true)]
public static extern void DelayMicroseconds(uint howLong);
/// <summary>
/// This returns a number representing the number of milliseconds since your program called one of the wiringPiSetup functions.
/// It returns an unsigned 32-bit number which wraps after 49 days.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "millis", SetLastError = true)]
public static extern uint Millis();
/// <summary>
/// This returns a number representing the number of microseconds since your program called one of
/// the wiringPiSetup functions. It returns an unsigned 32-bit number which wraps after approximately 71 minutes.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "micros", SetLastError = true)]
public static extern uint Micros();
#endregion
}
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetup", SetLastError = true)]
public static extern Int32 WiringPiSetup();
/// <summary>
/// This initialises wiringPi but uses the /sys/class/gpio interface rather than accessing the hardware directly.
/// This can be called as a non-root user provided the GPIO pins have been exported before-hand using the gpio program.
/// Pin numbering in this mode is the native Broadcom GPIO numbers the same as wiringPiSetupGpio() above,
/// so be aware of the differences between Rev 1 and Rev 2 boards.
///
/// Note: In this mode you can only use the pins which have been exported via the /sys/class/gpio interface before you run your program.
/// You can do this in a separate shell-script, or by using the system() function from inside your program to call the gpio program.
/// Also note that some functions have no effect when using this mode as theyre not currently possible to action unless called with root privileges.
/// (although you can use system() to call gpio to set/change modes if needed)
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetupSys", SetLastError = true)]
public static extern Int32 WiringPiSetupSys();
/// <summary>
/// This is identical to wiringPiSetup, however it allows the calling programs to use the Broadcom GPIO
/// pin numbers directly with no re-mapping.
/// As above, this function needs to be called with root privileges, and note that some pins are different
/// from revision 1 to revision 2 boards.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetupGpio", SetLastError = true)]
public static extern Int32 WiringPiSetupGpio();
/// <summary>
/// Identical to wiringPiSetup, however it allows the calling programs to use the physical pin numbers on the P1 connector only.
/// This function needs to be called with root privileges.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiSetupPhys", SetLastError = true)]
public static extern Int32 WiringPiSetupPhys();
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="mode">The mode.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pinModeAlt", SetLastError = true)]
public static extern void PinModeAlt(Int32 pin, Int32 mode);
/// <summary>
/// This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or GPIO_CLOCK.
/// Note that only wiringPi pin 1 (BCM_GPIO 18) supports PWM output and only wiringPi pin 7 (BCM_GPIO 4)
/// supports CLOCK output modes.
///
/// This function has no effect when in Sys mode. If you need to change the pin mode, then you can
/// do it with the gpio program in a script before you start your program.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="mode">The mode.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pinMode", SetLastError = true)]
public static extern void PinMode(Int32 pin, Int32 mode);
/// <summary>
/// This sets the pull-up or pull-down resistor mode on the given pin, which should be set as an input.
/// Unlike the Arduino, the BCM2835 has both pull-up an down internal resistors. The parameter pud should be; PUD_OFF,
/// (no pull up/down), PUD_DOWN (pull to ground) or PUD_UP (pull to 3.3v) The internal pull up/down resistors
/// have a value of approximately 50KΩ on the Raspberry Pi.
///
/// This function has no effect on the Raspberry Pis GPIO pins when in Sys mode.
/// If you need to activate a pull-up/pull-down, then you can do it with the gpio program in a script before you start your program.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="pud">The pud.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pullUpDnControl", SetLastError = true)]
public static extern void PullUpDnControl(Int32 pin, Int32 pud);
/// <summary>
/// This function returns the value read at the given pin. It will be HIGH or LOW (1 or 0) depending on the logic level at the pin.
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "digitalRead", SetLastError = true)]
public static extern Int32 DigitalRead(Int32 pin);
/// <summary>
/// Writes the value HIGH or LOW (1 or 0) to the given pin which must have been previously set as an output.
/// WiringPi treats any non-zero number as HIGH, however 0 is the only representation of LOW.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "digitalWrite", SetLastError = true)]
public static extern void DigitalWrite(Int32 pin, Int32 value);
/// <summary>
/// Writes the value to the PWM register for the given pin. The Raspberry Pi has one
/// on-board PWM pin, pin 1 (BMC_GPIO 18, Phys 12) and the range is 0-1024.
/// Other PWM devices may have other PWM ranges.
/// This function is not able to control the Pis on-board PWM when in Sys mode.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmWrite", SetLastError = true)]
public static extern void PwmWrite(Int32 pin, Int32 value);
/// <summary>
/// This returns the value read on the supplied analog input pin. You will need to
/// register additional analog modules to enable this function for devices such as the Gertboard, quick2Wire analog board, etc.
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "analogRead", SetLastError = true)]
public static extern Int32 AnalogRead(Int32 pin);
/// <summary>
/// This writes the given value to the supplied analog pin. You will need to register additional
/// analog modules to enable this function for devices such as the Gertboard.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "analogWrite", SetLastError = true)]
public static extern void AnalogWrite(Int32 pin, Int32 value);
/// <summary>
/// This returns the board revision of the Raspberry Pi. It will be either 1 or 2. Some of the BCM_GPIO pins changed number and
/// function when moving from board revision 1 to 2, so if you are using BCM_GPIO pin numbers, then you need to be aware of the differences.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piBoardRev", SetLastError = true)]
public static extern Int32 PiBoardRev();
/// <summary>
/// This function is undocumented
/// </summary>
/// <param name="model">The model.</param>
/// <param name="mem">The memory.</param>
/// <param name="maker">The maker.</param>
/// <param name="overVolted">The over volted.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piBoardId", SetLastError = true)]
public static extern Int32 PiBoardId(ref Int32 model, ref Int32 mem, ref Int32 maker, ref Int32 overVolted);
/// <summary>
/// This returns the BCM_GPIO pin number of the supplied wiringPi pin. It takes the board revision into account.
/// </summary>
/// <param name="wPiPin">The w pi pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wpiPinToGpio", SetLastError = true)]
public static extern Int32 WpiPinToGpio(Int32 wPiPin);
/// <summary>
/// This returns the BCM_GPIO pin number of the supplied physical pin on the P1 connector.
/// </summary>
/// <param name="physPin">The physical pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "physPinToGpio", SetLastError = true)]
public static extern Int32 PhysPinToGpio(Int32 physPin);
/// <summary>
/// This sets the “strength” of the pad drivers for a particular group of pins.
/// There are 3 groups of pins and the drive strength is from 0 to 7. Do not use this unless you know what you are doing.
/// </summary>
/// <param name="group">The group.</param>
/// <param name="value">The value.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "setPadDrive", SetLastError = true)]
public static extern Int32 SetPadDrive(Int32 group, Int32 value);
/// <summary>
/// Undocumented function
/// </summary>
/// <param name="pin">The pin.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "getAlt", SetLastError = true)]
public static extern Int32 GetAlt(Int32 pin);
/// <summary>
/// Undocumented function
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="freq">The freq.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "pwmToneWrite", SetLastError = true)]
public static extern Int32 PwmToneWrite(Int32 pin, Int32 freq);
/// <summary>
/// This writes the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to set all 8 bits at once to a particular value, although it still takes two write operations to the Pis GPIO hardware.
/// </summary>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "digitalWriteByte", SetLastError = true)]
public static extern void DigitalWriteByte(Int32 value);
/// <summary>
/// This writes the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to set all 8 bits at once to a particular value, although it still takes two write operations to the Pis GPIO hardware.
/// </summary>
/// <param name="value">The value.</param>
[DllImport(WiringPiLibrary, EntryPoint = "digitalWriteByte2", SetLastError = true)]
public static extern void DigitalWriteByte2(Int32 value);
/// <summary>
/// Undocumented function
/// This reads the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to get all 8 bits at once to a particular value.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "digitalReadByte", SetLastError = true)]
public static extern UInt32 DigitalReadByte();
/// <summary>
/// Undocumented function
/// This reads the 8-bit byte supplied to the first 8 GPIO pins.
/// Its the fastest way to get all 8 bits at once to a particular value.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "digitalReadByte2", SetLastError = true)]
public static extern UInt32 DigitalReadByte2();
/// <summary>
/// The PWM generator can run in 2 modes “balanced” and “mark:space”. The mark:space mode is traditional,
/// however the default mode in the Pi is “balanced”. You can switch modes by supplying the parameter: PWM_MODE_BAL or PWM_MODE_MS.
/// </summary>
/// <param name="mode">The mode.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmSetMode", SetLastError = true)]
public static extern void PwmSetMode(Int32 mode);
/// <summary>
/// This sets the range register in the PWM generator. The default is 1024.
/// </summary>
/// <param name="range">The range.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmSetRange", SetLastError = true)]
public static extern void PwmSetRange(UInt32 range);
/// <summary>
/// This sets the divisor for the PWM clock.
/// Note: The PWM control functions can not be used when in Sys mode.
/// To understand more about the PWM system, youll need to read the Broadcom ARM peripherals manual.
/// </summary>
/// <param name="divisor">The divisor.</param>
[DllImport(WiringPiLibrary, EntryPoint = "pwmSetClock", SetLastError = true)]
public static extern void PwmSetClock(Int32 divisor);
/// <summary>
/// Undocumented function
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="freq">The freq.</param>
[DllImport(WiringPiLibrary, EntryPoint = "gpioClockSet", SetLastError = true)]
public static extern void GpioClockSet(Int32 pin, Int32 freq);
/// <summary>
/// Note: Jan 2013: The waitForInterrupt() function is deprecated you should use the newer and easier to use wiringPiISR() function below.
/// When called, it will wait for an interrupt event to happen on that pin and your program will be stalled. The timeOut parameter is given in milliseconds,
/// or can be -1 which means to wait forever.
/// The return value is -1 if an error occurred (and errno will be set appropriately), 0 if it timed out, or 1 on a successful interrupt event.
/// Before you call waitForInterrupt, you must first initialise the GPIO pin and at present the only way to do this is to use the gpio program, either
/// in a script, or using the system() call from inside your program.
/// e.g. We want to wait for a falling-edge interrupt on GPIO pin 0, so to setup the hardware, we need to run: gpio edge 0 falling
/// before running the program.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="timeout">The timeout.</param>
/// <returns>The result code</returns>
[Obsolete]
[DllImport(WiringPiLibrary, EntryPoint = "waitForInterrupt", SetLastError = true)]
public static extern Int32 WaitForInterrupt(Int32 pin, Int32 timeout);
/// <summary>
/// This function registers a function to received interrupts on the specified pin.
/// The edgeType parameter is either INT_EDGE_FALLING, INT_EDGE_RISING, INT_EDGE_BOTH or INT_EDGE_SETUP.
/// If it is INT_EDGE_SETUP then no initialisation of the pin will happen its assumed that you have already setup the pin elsewhere
/// (e.g. with the gpio program), but if you specify one of the other types, then the pin will be exported and initialised as specified.
/// This is accomplished via a suitable call to the gpio utility program, so it need to be available.
/// The pin number is supplied in the current mode native wiringPi, BCM_GPIO, physical or Sys modes.
/// This function will work in any mode, and does not need root privileges to work.
/// The function will be called when the interrupt triggers. When it is triggered, its cleared in the dispatcher before calling your function,
/// so if a subsequent interrupt fires before you finish your handler, then it wont be missed. (However it can only track one more interrupt,
/// if more than one interrupt fires while one is being handled then they will be ignored)
/// This function is run at a high priority (if the program is run using sudo, or as root) and executes concurrently with the main program.
/// It has full access to all the global variables, open file handles and so on.
/// </summary>
/// <param name="pin">The pin.</param>
/// <param name="mode">The mode.</param>
/// <param name="method">The method.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "wiringPiISR", SetLastError = true)]
public static extern Int32 WiringPiISR(Int32 pin, Int32 mode, InterruptServiceRoutineCallback method);
/// <summary>
/// This function creates a thread which is another function in your program previously declared using the PI_THREAD declaration.
/// This function is then run concurrently with your main program. An example may be to have this function wait for an interrupt while
/// your program carries on doing other tasks. The thread can indicate an event, or action by using global variables to
/// communicate back to the main program, or other threads.
/// </summary>
/// <param name="method">The method.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piThreadCreate", SetLastError = true)]
public static extern Int32 PiThreadCreate(ThreadWorker method);
/// <summary>
/// These allow you to synchronise variable updates from your main program to any threads running in your program. keyNum is a number from 0 to 3 and represents a key.
/// When another process tries to lock the same key, it will be stalled until the first process has unlocked the same key.
/// You may need to use these functions to ensure that you get valid data when exchanging data between your main program and a thread
/// otherwise its possible that the thread could wake-up halfway during your data copy and change the data
/// so the data you end up copying is incomplete, or invalid. See the wfi.c program in the examples directory for an example.
/// </summary>
/// <param name="key">The key.</param>
[DllImport(WiringPiLibrary, EntryPoint = "piLock", SetLastError = true)]
public static extern void PiLock(Int32 key);
/// <summary>
/// These allow you to synchronise variable updates from your main program to any threads running in your program. keyNum is a number from 0 to 3 and represents a key.
/// When another process tries to lock the same key, it will be stalled until the first process has unlocked the same key.
/// You may need to use these functions to ensure that you get valid data when exchanging data between your main program and a thread
/// otherwise its possible that the thread could wake-up halfway during your data copy and change the data
/// so the data you end up copying is incomplete, or invalid. See the wfi.c program in the examples directory for an example.
/// </summary>
/// <param name="key">The key.</param>
[DllImport(WiringPiLibrary, EntryPoint = "piUnlock", SetLastError = true)]
public static extern void PiUnlock(Int32 key);
/// <summary>
/// This attempts to shift your program (or thread in a multi-threaded program) to a higher priority
/// and enables a real-time scheduling. The priority parameter should be from 0 (the default) to 99 (the maximum).
/// This wont make your program go any faster, but it will give it a bigger slice of time when other programs are running.
/// The priority parameter works relative to others so you can make one program priority 1 and another priority 2
/// and it will have the same effect as setting one to 10 and the other to 90 (as long as no other
/// programs are running with elevated priorities)
/// The return value is 0 for success and -1 for error. If an error is returned, the program should then consult the errno global variable, as per the usual conventions.
/// Note: Only programs running as root can change their priority. If called from a non-root program then nothing happens.
/// </summary>
/// <param name="priority">The priority.</param>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "piHiPri", SetLastError = true)]
public static extern Int32 PiHiPri(Int32 priority);
/// <summary>
/// This causes program execution to pause for at least howLong milliseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer or approximately 49 days.
/// </summary>
/// <param name="howLong">The how long.</param>
[DllImport(WiringPiLibrary, EntryPoint = "delay", SetLastError = true)]
public static extern void Delay(UInt32 howLong);
/// <summary>
/// This causes program execution to pause for at least howLong microseconds.
/// Due to the multi-tasking nature of Linux it could be longer.
/// Note that the maximum delay is an unsigned 32-bit integer microseconds or approximately 71 minutes.
/// Delays under 100 microseconds are timed using a hard-coded loop continually polling the system time,
/// Delays over 100 microseconds are done using the system nanosleep() function You may need to consider the implications
/// of very short delays on the overall performance of the system, especially if using threads.
/// </summary>
/// <param name="howLong">The how long.</param>
[DllImport(WiringPiLibrary, EntryPoint = "delayMicroseconds", SetLastError = true)]
public static extern void DelayMicroseconds(UInt32 howLong);
/// <summary>
/// This returns a number representing the number of milliseconds since your program called one of the wiringPiSetup functions.
/// It returns an unsigned 32-bit number which wraps after 49 days.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "millis", SetLastError = true)]
public static extern UInt32 Millis();
/// <summary>
/// This returns a number representing the number of microseconds since your program called one of
/// the wiringPiSetup functions. It returns an unsigned 32-bit number which wraps after approximately 71 minutes.
/// </summary>
/// <returns>The result code</returns>
[DllImport(WiringPiLibrary, EntryPoint = "micros", SetLastError = true)]
public static extern UInt32 Micros();
#endregion
}
}

View File

@ -1,110 +1,121 @@
namespace Unosquare.RaspberryIO
{
using Camera;
using Computer;
using Gpio;
using Native;
using System.Threading.Tasks;
using Swan.Components;
/// <summary>
/// Our main character. Provides access to the Raspberry Pi's GPIO, system and board information and Camera
/// </summary>
public static class Pi
{
private static readonly object SyncLock = new object();
/// <summary>
/// Initializes static members of the <see cref="Pi" /> class.
/// </summary>
static Pi()
{
lock (SyncLock)
{
// Extraction of embedded resources
Resources.EmbeddedResources.ExtractAll();
// Instance assignments
Gpio = GpioController.Instance;
Info = SystemInfo.Instance;
Timing = Timing.Instance;
Spi = SpiBus.Instance;
I2C = I2CBus.Instance;
Camera = CameraController.Instance;
PiDisplay = DsiDisplay.Instance;
}
}
#region Components
/// <summary>
/// Provides access to the Raspberry Pi's GPIO as a collection of GPIO Pins.
/// </summary>
public static GpioController Gpio { get; }
/// <summary>
/// Provides information on this Raspberry Pi's CPU and form factor.
/// </summary>
public static SystemInfo Info { get; }
/// <summary>
/// Provides access to The PI's Timing and threading API
/// </summary>
public static Timing Timing { get; }
/// <summary>
/// Provides access to the 2-channel SPI bus
/// </summary>
public static SpiBus Spi { get; }
/// <summary>
/// Provides access to the functionality of the i2c bus.
/// </summary>
public static I2CBus I2C { get; }
/// <summary>
/// Provides access to the official Raspberry Pi Camera
/// </summary>
public static CameraController Camera { get; }
/// <summary>
/// Provides access to the official Raspberry Pi 7-inch DSI Display
/// </summary>
public static DsiDisplay PiDisplay { get; }
/// <summary>
/// Gets the logger source name.
/// </summary>
internal static string LoggerSource => typeof(Pi).Namespace;
#endregion
#region Methods
/// <summary>
/// Restarts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static async Task<ProcessResult> RestartAsync() => await ProcessRunner.GetProcessResultAsync("reboot", null, null);
/// <summary>
/// Restarts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static ProcessResult Restart() => RestartAsync().GetAwaiter().GetResult();
/// <summary>
/// Halts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static async Task<ProcessResult> ShutdownAsync() => await ProcessRunner.GetProcessResultAsync("halt", null, null);
/// <summary>
/// Halts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static ProcessResult Shutdown() => ShutdownAsync().GetAwaiter().GetResult();
#endregion
}
}
using Unosquare.RaspberryIO.Camera;
using Unosquare.RaspberryIO.Computer;
using Unosquare.RaspberryIO.Gpio;
using Unosquare.RaspberryIO.Native;
using System.Threading.Tasks;
using Unosquare.Swan.Components;
using System;
namespace Unosquare.RaspberryIO {
/// <summary>
/// Our main character. Provides access to the Raspberry Pi's GPIO, system and board information and Camera
/// </summary>
public static class Pi {
private static readonly Object SyncLock = new Object();
/// <summary>
/// Initializes static members of the <see cref="Pi" /> class.
/// </summary>
static Pi() {
lock(SyncLock) {
// Extraction of embedded resources
Resources.EmbeddedResources.ExtractAll();
// Instance assignments
Gpio = GpioController.Instance;
Info = SystemInfo.Instance;
Timing = Timing.Instance;
Spi = SpiBus.Instance;
I2C = I2CBus.Instance;
Camera = CameraController.Instance;
PiDisplay = DsiDisplay.Instance;
}
}
#region Components
/// <summary>
/// Provides access to the Raspberry Pi's GPIO as a collection of GPIO Pins.
/// </summary>
public static GpioController Gpio {
get;
}
/// <summary>
/// Provides information on this Raspberry Pi's CPU and form factor.
/// </summary>
public static SystemInfo Info {
get;
}
/// <summary>
/// Provides access to The PI's Timing and threading API
/// </summary>
public static Timing Timing {
get;
}
/// <summary>
/// Provides access to the 2-channel SPI bus
/// </summary>
public static SpiBus Spi {
get;
}
/// <summary>
/// Provides access to the functionality of the i2c bus.
/// </summary>
public static I2CBus I2C {
get;
}
/// <summary>
/// Provides access to the official Raspberry Pi Camera
/// </summary>
public static CameraController Camera {
get;
}
/// <summary>
/// Provides access to the official Raspberry Pi 7-inch DSI Display
/// </summary>
public static DsiDisplay PiDisplay {
get;
}
/// <summary>
/// Gets the logger source name.
/// </summary>
internal static String LoggerSource => typeof(Pi).Namespace;
#endregion
#region Methods
/// <summary>
/// Restarts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static async Task<ProcessResult> RestartAsync() => await ProcessRunner.GetProcessResultAsync("reboot", null, null);
/// <summary>
/// Restarts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static ProcessResult Restart() => RestartAsync().GetAwaiter().GetResult();
/// <summary>
/// Halts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static async Task<ProcessResult> ShutdownAsync() => await ProcessRunner.GetProcessResultAsync("halt", null, null);
/// <summary>
/// Halts the Pi. Must be running as SU
/// </summary>
/// <returns>The process result</returns>
public static ProcessResult Shutdown() => ShutdownAsync().GetAwaiter().GetResult();
#endregion
}
}

View File

@ -1,65 +1,55 @@
namespace Unosquare.RaspberryIO.Resources
{
using Native;
using Swan;
using System;
using System.Collections.ObjectModel;
using System.IO;
using Unosquare.RaspberryIO.Native;
using Unosquare.Swan;
using System;
using System.Collections.ObjectModel;
using System.IO;
namespace Unosquare.RaspberryIO.Resources {
/// <summary>
/// Provides access to embedded assembly files
/// </summary>
internal static class EmbeddedResources {
/// <summary>
/// Provides access to embedded assembly files
/// Initializes static members of the <see cref="EmbeddedResources"/> class.
/// </summary>
internal static class EmbeddedResources
{
/// <summary>
/// Initializes static members of the <see cref="EmbeddedResources"/> class.
/// </summary>
static EmbeddedResources()
{
ResourceNames =
new ReadOnlyCollection<string>(typeof(EmbeddedResources).Assembly().GetManifestResourceNames());
}
/// <summary>
/// Gets the resource names.
/// </summary>
/// <value>
/// The resource names.
/// </value>
public static ReadOnlyCollection<string> ResourceNames { get; }
/// <summary>
/// Extracts all the file resources to the specified base path.
/// </summary>
public static void ExtractAll()
{
var basePath = Runtime.EntryAssemblyDirectory;
var executablePermissions = Standard.StringToInteger("0777", IntPtr.Zero, 8);
foreach (var resourceName in ResourceNames)
{
var filename = resourceName.Substring($"{typeof(EmbeddedResources).Namespace}.".Length);
var targetPath = Path.Combine(basePath, filename);
if (File.Exists(targetPath)) return;
using (var stream = typeof(EmbeddedResources).Assembly()
.GetManifestResourceStream($"{typeof(EmbeddedResources).Namespace}.{filename}"))
{
using (var outputStream = File.OpenWrite(targetPath))
{
stream?.CopyTo(outputStream);
}
try
{
Standard.Chmod(targetPath, (uint)executablePermissions);
}
catch
{
/* Ignore */
}
}
}
}
}
static EmbeddedResources() => ResourceNames = new ReadOnlyCollection<String>(typeof(EmbeddedResources).Assembly().GetManifestResourceNames());
/// <summary>
/// Gets the resource names.
/// </summary>
/// <value>
/// The resource names.
/// </value>
public static ReadOnlyCollection<String> ResourceNames {
get;
}
/// <summary>
/// Extracts all the file resources to the specified base path.
/// </summary>
public static void ExtractAll() {
String basePath = Runtime.EntryAssemblyDirectory;
Int32 executablePermissions = Standard.StringToInteger("0777", IntPtr.Zero, 8);
foreach(String resourceName in ResourceNames) {
String filename = resourceName.Substring($"{typeof(EmbeddedResources).Namespace}.".Length);
String targetPath = Path.Combine(basePath, filename);
if(File.Exists(targetPath)) {
return;
}
using(Stream stream = typeof(EmbeddedResources).Assembly().GetManifestResourceStream($"{typeof(EmbeddedResources).Namespace}.{filename}")) {
using(FileStream outputStream = File.OpenWrite(targetPath)) {
stream?.CopyTo(outputStream);
}
try {
_ = Standard.Chmod(targetPath, (UInt32)executablePermissions);
} catch {
/* Ignore */
}
}
}
}
}
}